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In this post we give solution of the most general first-order ordinary differential equation.
This equation has the form:

(1)
dx

dt
+ p(t)x = g(t).

We solve the equation by finding an integrating factor in much the same way that we did
to produce exact differential equations from equations that were not exact.

Consider the following expression.

(2)
d

dt

(
exp

(∫
p(t)dt

)
· x
)

= exp

(∫
p(t)dt

)
·
(
dx

dt
+ p(t) · x

)
We can put (1) and (2) together in the following way.

d

dt

(
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(∫
p(t)dt

)
· x
)

= exp

(∫
p(t)dt

)
·
(
dx

dt
+ p(t)x

)
= exp

(∫
p(t)dt

)
· g(t)

We can now solve.

exp

(∫
p(t)dt

)
· x =

∫ (
exp

(∫
p(t)dt

)
· g(t)

)
dt + C

x = exp

(
−
∫

p(t)dt

)
·
(∫ (

exp

(∫
p(t)dt

)
· g(t)

)
dt + C

)
The basic trick is to note that the function exp

(∫
p(t)dt

)
is an integrating factor for the

left-hand side of (1).

1. Example

Consider the differential equation.

(3)
dx

dt
+

1

t
x = sin(t)

Our integrating factor is exp
(∫

1
t dt
)

= exp(ln(t)) = t. So, our differential equation
becomes
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d

dt
(t · x) = t · sin(t)

and the solutiion is

x(t) =
1

t

∫
t sin(t) dt +

C

t
=

sin(t)

t
− cos(t) +

C

t
.


