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In this post we determine when a set of solutions of a linear differential equation are
linearly independent. We first discuss the linear space of solutions for a homogeneous
differential equation.

1. Homogeneous Linear Differential Equations

We start with homogeneous linear nth-order ordinary differential equations with general
coefficients. The form for the nth-order type of equation is the following.

(1) an(t)
dnx

dtn
+ an−1(t)

dn−1x

dtn−1
+ · · ·+ a0(t)x = 0

It is straightforward to solve such an equation if the functions ai(t) are all constants.
However, for general functions as above, it may not be so easy. However, we do have a
principle that is useful. Because the equation is linear and homogeneous, if we have a set of
solutions {x1(t), . . . , xn(t)}, then any linear combination of the solutions is also a solution.
That is

(2) x(t) = C1x1(t) + C2x2(t) + · · ·+ Cnxn(t)

is also a solution for any choice of constants {C1, C2, . . . , Cn}. Now if the solutions
{x1(t), . . . , xn(t)} are linearly independent, then (2) is the general solution of the differential
equation. We will explain why later.

What does it mean for the functions, {x1(t), . . . , xn(t)}, to be linearly independent? The
simple straightforward answer is that

(3) C1x1(t) + C2x2(t) + · · ·+ Cnxn(t) = 0

implies that C1 = 0, C2 = 0, . . . , and Cn = 0 where the Ci’s are arbitrary constants.
This is the definition, but it is not so easy to determine from it just when the condition

holds to show that a given set of functions, {x1(t), x2(t), . . . , xn}, is linearly independent.
The Wronskian is a practical way of determining this.

Let {x1(t), x2(t), . . . , xn} be an arbitrary set of functions that are (n− 1) times contin-
uously differentiable. Then the Wronskian matrix is given by the following.
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(4) W (x1(t), x2(t), . . . , xn(t)) =


x1(t) x2(t) · · · xn(t)
x′1(t) x′2(t) · · · x′n(t)

...
. . .

...

x(n−1)(t) x′2(t) · · · x
(n−1)
n (t)


It turns out that the original set of functions, {x1(t), x2(t), . . . , xn}, is linearly indepen-

dent if and only if detW (x1(t), x2(t), . . . , xn) 6= 0. This would still be a difficult task, but
computer technology can come to our aid. In your set of programs is a program that pro-
duces the Wronskian matrix. The calculations are symbolic and the determinant program
in the TI-Nspire CX CAS will also do that calculation symbolically. This gives us a quick
and reliable means of determining when a set of functions is linearly independent.

2. Example

Suppose that our set of functions is given by {sin(t), cos(t), exp(t)}. Using our program
we get that the Wronskian matrix is given by

(5) W (sin(t), cos(t), exp(t) =

 sin(t) cos(t) exp(t)
cos(t) − sin(t) exp(t)
− sin(t) − cos(t) exp(t)


By computing the determinant of this matrix we get

(6) det (W (sin(t), cos(t), exp(t))) = −2 exp(t)

which indicates that these functions are linearly independent.

3. Proof

We will now show that if the Wronskian of a set of functions is not zero, then the
functions are linearly independent. As above suppose that {x1(t), x2(t), . . . , xn} is our
set of functions which are (n − 1) times continuously differentiable. Consider a linear
combination of these functions as given in (2). We would like to determine if the constants
{C1, . . . , Cn} must all be zero or not. Consider the equation C1x1(t) + · · ·+ Cnxn(t) = 0.
If this holds then by taking successive derivatives, all of the equations below also hold.

(7)

C1 · x1(t) + C2 · x2(t) + · · ·+ Cn · xn(t) = 0
C1 · x′1(t) + C2 · x′2(t) + · · ·+ Cn · x′n(t) = 0

...

C1 · x(n−1)1 (t) + C2 · x(n−1)2 (t) + · · ·+ Cn · x(n−1)n (t) = 0

We can rewrite the equations in matrix form as the following.
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(8)


x1(t) x2(t) · · · xn(t)
x′1(t) x′2(t) · · · x′n(t)

...
. . .

...

x(n−1)(t) x′2(t) · · · x
(n−1)
n (t)

×

C1

C2
...
Cn

 =


0
0
...
0


Note that our matrix of coefficients for the equation is just the Wronskian of our set

of functions {x1(t), x2(t), . . . , xn}. If the Wronskian is not zero, then there is a unique
solution to the equations, namely, Ci = 0 for all i = 1, 2, . . . , n. On the other hand, if the
Wronskian is zero, then there are infinitely many solutions.

Note also that we only need that the Wronskian is not zero for some value of t = t0.
Since all the functions in the Wronskian matrix are continuous, the Wronskian will be
non-zero in an interval about t0 as well. Suppose that our functions are all solutions
of an nth degree linear differential equation. Suppose also that we want a solution x(t)

such that x(i)(t0) = Ai for some set of values {A0, A1, . . . , A(n−1)}. Suppose that the
determinant of the Wronskian matrix is non-zero at t0. Then there will be a solution
x(t) = C1x1(t) + C2x2(t) + · · ·+ Cnxn(t) such that x(i)(t0) = Ai for all i = 0, 1, . . . , n− 1.
The solution is given by the set of constants that satisfy the following equation at t0.

(9)


x1(t0) x2(t0) · · · xn(t0)
x′1(t0) x′2(t0) · · · x′n(t0)

...
. . .

...

x(n−1)(t0) x′2(t0) · · · x
(n−1)
n (t0)

×

C1

C2
...
Cn

 =


A0

A1
...

An−1


For this set of constants we have a solution x(t) = C1x1(t) + C2x2(t) + · · · + Cnxn(t)

valid in a neighborhood of t0 such that x(i)(t0) = Ai for all i = 0, 1, . . . , n− 1.

4. Example

Consider the differential equation

(10) x′′ + x = 0

Suppose that we have two initial conditions x(0) = 1 and x′(0) = −1 that we want
satisfied.

We have two solutions to the general equation, sin(t) and cos(t). So, we also have any
linear combination, x(t) = C1 sin(t) +C2 cos(t) of these solutions as a solution as well. We
form the Wronskian matrix from our solutions.

(11) W (sin(t), cos(t)) =

[
sin(t) cos(t)
cos(t) − sin(t)

]
Evaluating this at t = t0 = 0 we get the matrix
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(12) W (sin(t), cos(t)) =

[
0 1
1 0

]
which has non-zero determinant. The initial conditions give us A0 = 1 and A1 = −1. So,
we apply (9) to solve for C1 and C2 to get that C1 = −1 and C2 = 1 to get the solution fo
the initial value problem of (10).

(13) x(t) = cos(t)− sin(t)

5. The General Solution of the Homogeneous Linear Differential
Equation of Order n

We have hinted that the general solution of (1) is a linear combination of linearly in-
dependent solutions of (1). Suppose that we have solutions {x1(t), . . . , xn(t)} such that
the determinant of the Wronskian matrix for these solutions is not zero at a point t0.
Then there are constants {C1, . . . , Cn} so that the initial conditions x(t0) = A0, x

′(t0) =

A1, . . . , x
(n−1)(t0) = A(n−1) are satisfied using (9). This is because we are assuming

that the determinant of the Wronskian matrix at t0 is not zero. On the other hand,
if we have a solution of an nth−order equation, call if x(t) and we know the values

x(t0), x
′(t0), x

′′(t0, . . . , x
(n−1)(t0), then our argument above says that this solution will be

unique. However, there is a solution of the form x(t) = C1x1(t) +C2x2(t) + · · ·+Cnxn(t).
So, every solution is of this form.

So, find n solutions of (1), {x1(t), . . . , xn(t)}. Determine that they are linearly indepen-
dent using the Wronskian. Then the space of all linear combinations of these solutions,
C1x1(t) + · · ·+ Cnxn(t), is the collection of all solutions.

6. Variation of Parameters

In this section we give another use of the Wronskian matrix. We start with the general
nth−order linear differential equation. It has the following form.

(14)
dnx

dtn
+ an−1(t)

dn−1x

dtn−1
+ · · ·+ a0(t)x = g(t)

Note that we are assuming that the leading coefficient function an(t) ≡ 1. There is no loss
of generality in doing this, but it makes the calculations easier. Suppose that we have a
set of linearly independent solutions, {x1(t), x2(t), . . . , xn(t)}, of the related homogeneous
equation.

(15)
dnx

dtn
+ an−1(t)

dn−1x

dtn−1
+ · · ·+ a0(t)x = 0

Then we know that the general solution to (14) will be of the form
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(16) x0(t) + C1x1(t) + · · ·+ Cnxn(t)

where x0(t) is a particular solution to (14) and C1x1(t) + · · · + Cnxn(t) is the general
solution to (15).

Now we assume that there is a particular solution of the form x0 = v1(t)x1(t) + · · · +
vn(t)xn(t). We now describe a method of determining a set of functions, {v1(t), v2(t), . . . , vn(t)},
that will give such a solution. When we take the derivative of this function we get

dx0
dt

=
d

dt
(v1x1 + · · ·+ vnxn)

= v′1x1 + · · ·+ v′nxn + v1x
′
1 + · · ·+ vnx

′
n

(17)

and we arbitrarily set v′1x1 + · · ·+ v′nxn = 0 to leave us with dx0
dt = d

dt(v1x1 + · · ·+ vnxn) =
v1x
′
1 + · · ·+ vnx

′
n. When we take the second derivative of our particular solution we get

d2x0
dt2

=
d2

dt2
(v1x1 + · · ·+ vnxn)

=
d

dt
(v1x

′
1 + · · ·+ vnx

′
n)

= v′1x
′
1 + · · ·+ v′nx

′
n + v′1x

′′
1 + · · ·+ v′nx

′′
n

(18)

and again we arbitrarily set v′1x
′
1 + · · · + v′nx

′
n = 0. We continue in this fashion until we

end up with the following set of equations.

0 = v′1x1 + · · ·+ v′nxn

0 = v′1x
′
1 + · · ·+ v′nx

′
n

...

g(x) = v′1x
(n−1)
1 + · · ·+ v′nx

(n−1)
n

(19)

We can rewrite this in matrix form as

(20)


x1 x2 · · · xn
x′1 x′2 · · · x′n
...

. . .
...

x(n−1) x
(n−1)
2 · · · x

(n−1)
n

×

v′1
v′2
...
v′n

 =


0
0
...

g(t)


The solution to this matrix equation gives us a vector whose entries are the derivatives of

our unknown functions vi(t). The matrix on the left is just the Wronskian. By assumption,
its determinant is not zero for any t in the interval under consideration. So, the equations
can be solved for a unique set of functions {v′1, . . . , v′n}. After integrating these we get our
particular solution x0 = v1x1 + v2x2 + · · ·+ vnxn.
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7. Example

Consider the differential equation

(21) x′′′ − x′′ + x′ − x = exp(2t)

We find the general solution of the homogeneous equation and find it to be C1 sin(t) +
C2 cos(t)+C3 exp(t). For the functions {sin(t), cos(t), exp(t)} we get the Wronskian matrix
to be the following.

(22)

 sin(t) cos(t) exp(t)
cos(t) − sin(t) exp(t)
− sin(t) − cos(t) exp(t)


We now use (20) to solve for the {v′1, v′2, v′3}. Integrating these and combining them we

get the solution x0 = v1x1 +v2x2 +v3x3 = exp(2t)
2 . It would be a good idea to do this using

the steps described. This help assure that you understand the process involved. However,
there is a program provided for you for the TI-Nspire CX CAS which will do all of this.
Here is the call for the program.

VarParameters([sin(t), cos(t), exp(t)], exp(2t))

With this particular solution we now have the following general solution.

(23) x(t) = C1 sin(t) + C2 cos(t) + C3 exp(t) +
exp(2t)

2
For this example, we could also have used the method of undetermined coefficients as well

to get the same outcome. The method of variation of parameters works for any function
g(t). The method of undetermined coefficients only works for a limited set of functions
g(t).


