MAA 4211 FINAL - JAMES KEESLING

Work all problems.	Each problem is	s worth 10 point	ts. Partial o	credit will l	be given for
correct reasoning eve	n if the final answ	ver is incorrect. (Credit will be	e deducted :	for incorrect

NAME _____

reasoning even if the final answer is correct.

Problem 1. Suppose that X and Y are metric spaces and that $A \subset X$ is compact. Suppose that $f: X \to Y$ is continuous. Show that f(A) is compact.

Problem 2. Suppose $f:[a,b] \to [a,b]$ is continuous and x_0 is a point having period 3. How many points of period 7 are there? How many orbits of period 7? How many points of period 31 are there? How many orbits of period 31. Note that 31 is a prime number.

Problem 3. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuously differentiable and suppose that f(z) = 0. Suppose also that $f'(z) \neq 0$. Define $g(x) = x - \frac{f(x)}{f'(x)}$. Show that z is an attracting fixed point for g(x).

Problem 4. Show that for every $x \in \mathbb{R}$ there is an integer M such that M > x.

Problem 5. Consider $f(x) = x^2 \cdot \sin\left(\frac{1}{x}\right)$ for all $x \neq 0$. Define f(0) = 0. Show that f(x) is differentiable for all $x \in \mathbb{R}$ and that f'(x) is not continuous at 0.

Problem 6. State and prove the Banach Fixed Point Theorem.

Problem 7. Suppose that X is a compact metric space and that $f: X \to \mathbb{R}$ is continuous. Show that there is an $x_0 \in X$ such that for all $x \in X$, $f(x_0) \ge f(x)$.

Problem 8. Show that $\sum_{i=0}^{\infty} x^n = \frac{1}{1-x}$ for all |x| < 1.

Problem 9. Suppose that X is a complete metric space and that $A \subset X$ is closed. Show that A is a complete metric space.

Problem 10. Show that the Cantor Set C is uncountable.