
ADVANCED CALCULUS PRACTICE PROBLEMS

JAMES KEESLING

The problems that follow illustrate the methods covered in class. They are typical of
the types of problems that will be on the tests.

1. The Real Numbers

Problem 1. State the axioms for the the following operations and relations for the real
numbers R: (1) addition (+), (2) multiplication (·), and (3) less than (<).

Problem 2. State the Least Upper Bound Property for the real numbers.

Problem 3. Show that for every x ∈ R there is an integer M such that M > x. This
property of the real numbers is known as Archimedes’ Principle.

Problem 4. Show that for every ε > 0, there is a positive integer n such that 1
n < ε.

Problem 5. Let {xi}∞i=1 be a sequence of real numbers. Suppose that z ∈ R. What
does limi→∞ xi = z mean? We say that {xi}∞i=1 converges to z and that the sequence is
convergent. We say that z is the limit point for the sequence.

Problem 6. Suppose that {xi}∞i=1 is a sequence of real numbers such that for all i < j,
xi ≤ xj . We say that {xi}∞i=1 is monotone non-decreasing. Suppose also that the
sequence is bounded above. Show that the sequence is convergent. What is the limit?

Problem 7. Show that limn→∞
1
n = 0.

Problem 8. Show that limn→∞ x
n = 0 for all 0 < x < 1. Show this for all |x| < 1.

Problem 9. Show that
∑∞

i=0 x
n = 1

1−x for all |x| < 1. This series is known as the
Geometric Series.
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Problem 10. Show that
∑∞

n=1
1
n = ∞. If you were trying to determine if the series

converges on your calculator, what conclusion might you arrive at? What limit might the
series seem to have? This series is known as the Harmonic Series.

Problem 11. Show that
∑∞

n=1
(−1)n+1

n converges. Can you determine the limit? This
series is known as the Alternating Series.

Problem 12. Show that every nonnegative real number x has a decimal expansion,
x = a0.a1, a2, · · · where a0 ∈ N ∪ {0} and ai ∈ {0, 1, 2, . . . , 9} for all i > 0. Are the
decimal representations unique? When does a non-negative real number have more than
one decimal representation? When does a decimal representation represent a rational
number?

2. Sequential Compactness

Problem 13. The Bolzano-Weierstrass Theorem states that if {xn}∞n=1 is a bounded
sequence in R, then {xn}∞n=1 has a subsequence {xnj}∞j=1 such that limj→∞ xnj = z in R.
Prove the Bolzano-Weierstrass Theorem.

Problem 14. Let X be a metric space. A subset A ⊂ X is closed provided that for
every sequence {xn}∞n=1 in A such that limn→∞ xn = z, then z ∈ A. A subset A ⊂ X
is sequentially compact or compact provided that every sequence {xn}∞n=1 ⊂ A has a
subsequence {xnj}∞j=1 such that limj→∞ xnj = z ∈ A. Show that A ⊂ R is compact if and
only if A is closed and bounded.

Problem 15. Show that a closed bounded interval [a, b] is compact. Show that the
Cantor Middle Third Set is compact. One description of the Cantor Set is C = {x =∑∞

n=1
an
3n

∣∣an ∈ {0, 2}, n = 1, 2, . . . }.

Problem 16. Show that A ⊂ Rn is compact if and only if A is closed and bounded.

3. Functions and Continuity

Problem 17. Let X and Y be metric spaces. A function f : X → Y is continuous
provided that for every sequence {xn}∞n=1 in X such that limn→∞ = z ∈ X, then f(xn)→
f(z) as n → ∞ in Y . Show that there is a continuous function f : C → [0, 1] which is
onto, where C is the Cantor Middle Third Set. Show that there is a continuous function
f : C → [0, 1] × [0, 1]. Show that there is a continuous f : [0, 1] → [0, 1] × [0, 1]. [The
first such space-filling curve was discovered by Giuseppe Peano in 1890. David Hilbert
described another such function in 1891.]
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Problem 18. A set X is countable provided that it is finite or that there is a function
f : N → X which is one-to-one and onto. Show that N is countable, Z is countable, Zn
is countable, and Q is countable. Show that if X is countable and A ⊂ X, then A is
countable.

Problem 19. Show that [0, 1] is uncountable. Show that the Cantor Set C is uncountable.

Problem 20. Show that if X is any set, then there is no function f : X → 2X such that
f is onto.

Problem 21. Suppose that X and Y are metric spaces and that A ⊂ X is compact.
Suppose that f : X → Y is continuous. Show that f(A) is compact.

4. Connectedness

Problem 22. Suppose that X is a metric space and that A ⊂ X. We say that A is
disconnected provided that A = B1∪B2 such that for every sequence {xn}∞n=1 ⊂ Bi with
xn → z as n→∞, then z ∈ Bi for i = 1, 2. We say that {B1, B2} is a separation for A.
If A is not disconnected, then we say that A is connected. Suppose that X and Y are
metric spaces and that f : X → Y is continuous. Show that if A is connected in X, then
f(A) is connected in Y .

Problem 23. Suppose that f : [a, b] → R is continuous and that f([a, b]) ⊃ [a, b]. Show
that there is an x ∈ [a, b] such that f(x) = x.

Problem 24. Suppose that f : [a, b] → R is continuous and that f([a, b]) ⊃ [c, d]. Show
that there is an interval [x, y] ⊂ [a, b] such that f([x, y]) = [c, d].

Problem 25. Show that A ⊂ R is connected if and only if A is an interval.

Problem 26. State Sharkovsky’s Theorem. Prove that if f : [a, b]→ [a, b] is continuous
and x0 is a point having period 3, then for every n ∈ N, there is a point xn ∈ [a, b] such
that xn has period n.

Problem 27. Suppose f : [a, b] → [a, b] is continuous and x0 is a point having period 3.
How many points of period 5 are there? How many orbits of period 5? How many points
of period 29 are there? How many orbits of period 29? How many points of period 229?
Note that 29 and 229 are prime numbers. How many points of period 6?

Problem 28. Suppose f : [a, b] → [a, b] is continuous and x0 is a point having period 5.
Suppose that {x0, f(x0) = x1, f(x1) = x2, f(x2) = x3, f(x3) = x4, f(x4) = x0} is the orbit
with x2 < x3 < x4 < x0 < x1. What is the Markov Graph for this orbit? What is the
Adjacency Matrix for this orbit? Is there an orbit of period 3? How many orbits of
period 3 are there? How many orbits of period 229?



4 JAMES KEESLING

Problem 29. Let U ⊂ Rn be a connected open set. Suppose that x, y ∈ U . Show that
there is a continuous f : [0, 1]→ U such that f(0) = x and f(1) = y.

5. Completeness

Problem 30. Let X be a metric space. Then X is complete provided that every Cauchy
sequence converges. Show that R is complete. Show that Rn is complete. Show that Q is
not complete.
Problem 31. Let X be a metric space. Suppose that f : X → X is a function. We
say that f is a contraction mapping provided that there is a 0 < c < 1 such that for all
x, y ∈ X, d(f(x), f(y)) ≤ c · d(x, y). Suppose that X is a complete metric space and that
f : X → X is a contraction mapping. Then there is a unique point z such that f(z) = z.
Furthermore, for every x0 ∈ X, limn→∞ f

n(x0) = z. This is known as the Banach Fixed
Point Theorem. It is also known as the Contraction Mapping Theorem.

Problem 32. Let X be a complete metric space. Suppose that {Un}∞n=1 is a sequence of
dense open sets in X. Then ∩∞n=1Un is dense in X. This is known as the Baire Category
Theorem.

Problem 33. Suppose that X is a complete metric space and that A ⊂ X is closed. Show
that A is a complete metric space.

Problem 34. Suppose that X is a complete metric space and that {Ai}∞i=1 is a nested
sequence of closed subsets of X such that diam(An)→ 0 as n→∞. Show that ∩∞i=1Ai =
{x} for a unique x ∈ X.

Problem 35. Suppose that X is a metric space and that A ⊂ X is compact. Show that
A is also complete.

Problem 36. Suppose that X and Y are complete metric spaces. Show that X × Y is
complete with the metric d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2).

Problem 37. Suppose that X is a metric space and that A ⊂ X is complete in the metric
inherited from X. Show that A is closed in X.

6. Differentiation

Problem 38. Show that if f : R→ R is differentiable at a point x0, then f is continuous
at x0.

Problem 39. Suppose that f : R → R is differentiable at x0 and that for some ε > 0,
f(x0) ≥ f(x) for all x ∈ (x0 − ε, x0 + ε). Show that f ′(x0) = 0.

Problem 40. Suppose that X is a compact metric space and that f : X → R is continuous.
Show that there is an x0 ∈ X such that for all x ∈ X, f(x0) ≥ f(x).
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Problem 41. Consider f(x) = x2 · sin
(
1
x

)
for all x 6= 0. Define f(0) = 0. Show that f(x)

is differentiable for all x ∈ R and that f ′(x) is not continuous at 0.

Problem 42. The Mean Value Theorem states the following. Let f : [a, b] → R be
continuous with f(x) differentiable for all a < x < b. Then there is a c, a < c < b such
that

f ′(c) =
f(b)− f(a)

b− a
.

Prove the Mean Value Theorem.

Problem 43. Suppose that f : R → R is continuously differentiable and that f(z) = z
is a fixed point. Suppose that |f ′(z)| < 1. Show that there is an ε > 0 such that for all
x0 ∈ (z− ε, z+ ε), fn(x0)→ z as n→∞. Such a fixed point z is called an attracting fixed
point. What happens at z if |f ′(z)| > 1? Such a fixed point is called a repelling fixed point.

Problem 44. Suppose that f : R → R is continuously differentiable and suppose that

f(z) = 0. Suppose also that f ′(z) 6= 0. Define g(x) = x− f(x)
f ′(x) . Show that z is an attracting

fixed point for g.

Problem 45. Determine numerical solutions of the following equations.

cos(x) = x

x15 + 3x4 − 4x3 + x = 5

Problem 46. Let fµ : [0, 1] → [0, 1] be defined by fµ(x) = µ · x · (1 − x) for 0 ≤ µ ≤ 4.
Suppose that for some n and some x0 ∈ [0, 1], the derivative of fnµ (x) is zero at x = x0.

Show that for some 0 ≤ k < n, fk(x) = 1
2 .

Problem 47. Consider the function fµ(x) = µ ·x · (1−x). Determine the values of µ such
that f3µ

(
1
2

)
= 1

2 . Show that for one of these values of µ ∈ [0, 4], 1
2 is a periodic point of

period three. Show that for this value of µ, the derivative d
dxf

3
µ(x)

∣∣
x= 1

2
= 0.

Problem 48. Consider the function fµ(x) = µ ·x · (1−x). Determine the values of µ such
that f5µ

(
1
2

)
= 1

2 . Show that for three of these values of µ ∈ [0, 4], 1
2 is a periodic point of

period five. Show that for these value of µ, the derivative d
dxf

5
µ(x)

∣∣
x= 1

2
= 0. Thus, these

are attracting periodic orbits of period five.

Problem 49. Define f(x) = exp
(
− 1
x2

)
for x 6= 0 and f(0) = 0. Show that for every

n ≥ 0, dnf
dxn

∣∣
x=0

= 0. What is the Taylor Series for this f(x) centered at a = 0?
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Problem 50. The Taylor Remainder Theorem states the following. Suppose that
f(x) is (N + 1) times differentiable on [a, b] with a < x0 < b. Let a < x < b, then there is
a point ξ between x0 and x such that the following holds.

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′

2
(x− x0)2 + · · ·+ f (N)(x0)

N !
(x− x0)N +

fN+1(ξ)

(N + 1)!
(x− x0)N+1

=

N∑
n=0

f (n)

n!
(x− x0)n +

fN+1(ξ)

(N + 1)!
(x− x0)N+1

Prove the Taylor Remainder Theorem.


