MAA 4211 PRACTICE TEST 2 - JAMES KEESLING

The problems below are typical of what will be on Test 2. However, the test will consist of only five problems.

Problem 1. Suppose that X and Y are metric spaces and that $A \subset X$ is compact. Suppose that $f: X \to Y$ is continuous. Show that f(A) is compact.

Problem 2. Suppose that X and Y are metric spaces and that $f: X \to Y$ is continuous. Show that if A is connected in X, then f(A) is connected in Y.

Problem 3. Suppose $f : [a, b] \to [a, b]$ is continuous and x_0 is a point having period 3. How many points of period 5 are there? How many orbits of period 5? How many points of period 29 are there?

Problem 4. Let $U \subset \mathbb{R}^n$ be a connected open set. Suppose that $x, y \in U$. Show that there is a continuous $f : [0, 1] \to U$ such that f(0) = x and f(1) = y.

Problem 5. Show that \mathbb{R} is complete. Show that \mathbb{Q} is not complete.

Problem 6. State and prove the Banach Fixed Point Theorem.

Problem 7. Suppose that X is a metric space and that $A \subset X$ is compact. Show that A is also complete.

Problem 8. Show that if $f : \mathbb{R} \to \mathbb{R}$ is differentiable at a point x_0 , then f is continuous at x_0 .

Problem 9. Suppose that X is a compact metric space and that $f: X \to \mathbb{R}$ is continuous. Show that there is an $x_0 \in X$ such that for all $x \in X$, $f(x_0) \ge f(x)$.

Problem 10. Consider $f(x) = x^2 \cdot \sin\left(\frac{1}{x}\right)$ for all $x \neq 0$. Define f(0) = 0. Show that f(x) is differentiable for all $x \in \mathbb{R}$ and that f'(x) is not continuous at 0.

Problem 11. Prove the Mean Value Theorem.

Problem 12. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuously differentiable and suppose that f(z) = 0. Suppose also that $f'(z) \neq 0$. Define $g(x) = x - \frac{f(x)}{f'(x)}$. Show that z is an attracting fixed point for g.

Problem 13. Determine numerical solutions of the following equations.

$$\cos(x) = x$$

$$x^{15} + 3x^4 - 4x^3 + x = 5$$

Problem 14. Prove the Taylor Remainder Theorem.