MAA 4211 PRACTICE TEST 2 - JAMES KEESLING

The problems below are typical of what will be on Test 2. However, the test will consist of only five problems.

Problem 1. Suppose that X and Y are metric spaces and that $A \subset X$ is compact. Suppose that $f: X \rightarrow Y$ is continuous. Show that $f(A)$ is compact.
Problem 2. Suppose that X and Y are metric spaces and that $f: X \rightarrow Y$ is continuous. Show that if A is connected in X, then $f(A)$ is connected in Y.
Problem 3. Suppose $f:[a, b] \rightarrow[a, b]$ is continuous and x_{0} is a point having period 3 . How many points of period 5 are there? How many orbits of period 5 ? How many points of period 29 are there?
Problem 4. Let $U \subset \mathbb{R}^{n}$ be a connected open set. Suppose that $x, y \in U$. Show that there is a continuous $f:[0,1] \rightarrow U$ such that $f(0)=x$ and $f(1)=y$.
Problem 5. Show that \mathbb{R} is complete. Show that \mathbb{Q} is not complete.
Problem 6. State and prove the Banach Fixed Point Theorem.
Problem 7. Suppose that X is a metric space and that $A \subset X$ is compact. Show that A is also complete.
Problem 8. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a point x_{0}, then f is continuous at x_{0}.
Problem 9. Suppose that X is a compact metric space and that $f: X \rightarrow \mathbb{R}$ is continuous. Show that there is an $x_{0} \in X$ such that for all $x \in X, f\left(x_{0}\right) \geq f(x)$.
Problem 10. Consider $f(x)=x^{2} \cdot \sin \left(\frac{1}{x}\right)$ for all $x \neq 0$. Define $f(0)=0$. Show that $f(x)$ is differentiable for all $x \in \mathbb{R}$ and that $f^{\prime}(x)$ is not continuous at 0 .
Problem 11. Prove the Mean Value Theorem.
Problem 12. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable and suppose that $f(z)=0$. Suppose also that $f^{\prime}(z) \neq 0$. Define $g(x)=x-\frac{f(x)}{f^{\prime}(x)}$. Show that z is an attracting fixed point for g.
Problem 13. Determine numerical solutions of the following equations.

$$
\begin{gathered}
\cos (x)=x \\
x^{15}+3 x^{4}-4 x^{3}+x=5
\end{gathered}
$$

Problem 14. Prove the Taylor Remainder Theorem.

