FALL 2017 QUIZ 1

JAMES KEESLING

Problem 2. State the Least Upper Bound Property for the real numbers.

Problem 3. Show that for every $x \in \mathbb{R}$ there is an integer M such that $M>x$.

Problem 4. Show that for every $\varepsilon>0$, there is a positive integer n such that $\frac{1}{n}<\varepsilon$.

Problem 5. Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be a sequence of real numbers. Suppose that $z \in \mathbb{R}$. What does $\lim _{i \rightarrow \infty} x_{i}=z$ mean? We say that $\left\{x_{i}\right\}_{i=1}^{\infty}$ converges to z and that the sequence is convergent. We say that z is the limit point for the sequence.

Problem 6. Suppose that $\left\{x_{i}\right\}_{i=1}^{\infty}$ is a sequence of real numbers such that for all $i<j$, $x_{i} \leq x_{j}$. We say that $\left\{x_{i}\right\}_{i=1}^{\infty}$ is monotone non-decreasing. Suppose also that the sequence is bounded above. Show that the sequence is convergent. What is the limit?

Problem 7. Show that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

Problem 8. Show that $\lim _{n \rightarrow \infty} x^{n}=0$ for all $0<x<1$. Show this for all $|x|<1$.

Problem 9. Show that $\sum_{i=0}^{\infty} x^{n}=\frac{1}{1-x}$ for all $|x|<1$.

Problem 10. Show that $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$. If you were trying to determine if the series converges on your calculator, what conclusion might you arrive at? What limit might the series seem to have?

Problem 11. Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges. Can you determine the limit?

Problem 12. Show that every nonnegative real number x has a decimal expansion, $x=a_{0} \cdot a_{1}, a_{2}, \cdots$ where $a_{0} \in \mathbb{N} \cup\{0\}$ and $a_{i} \in\{0,1,2, \ldots, 9\}$ for all $i>0$. Are the decimal representations unique? When does a non-negative real number have more than one decimal representation? When does a decimal representation represent a rational number?

