MAA 4211 – James Keesling – Quiz 2

- **1.** State and prove the Banach Fixed Point Theorem.
- 2. Show that \mathbb{R} is a complete metric space. Show that \mathbb{R}^n is a complete metric space.
- 3. Suppose that X is a complete metric space and that $A \subset X$ is a closed subset. Show that A is a complete metric space.
- 4. Suppose that X is a complete metric space and that $\{A_i\}_{i=1}^{\infty}$ is a nested sequence of closed subsets of X such that diam $(A_i) \to 0$ as $n \to \infty$. Show that $\bigcap_{i=1}^{\infty} A_i = \{x\}$ for some unique $x \in X$.
- 5. Suppose that X is a metric space. Suppose that $A \subset X$ is compact. Show that A is complete.
- 6. Suppose that X is a metric space and suppose that $A \subset X$ is complete. Show that there is a sequence of open sets in X, $\{U_i\}_{i=1}^{\infty}$ such that for all $i, U_i \supset A$ with $\bigcap_{i=1}^{\infty} U_i = A$. We say that A is a G_{δ} .
- 7. Suppose that X and Y are complete metric spaces. Show that $X \times Y$ is a complete with the metric $d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$.
- 8. Let $U \subset \mathbb{R}^n$ be a connected open subset of \mathbb{R}^n . Suppose that $x, y \in U$. Show that there is a continuous function $f:[0,1] \to U$ such that f(0) = x and f(1) = y.