MAA 4211 QUIZ 4 FALL 2017 - JAMES KEESLING

Problem 1. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a point x_{0}, then f is continuous at x_{0}.

Problem 2. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at x_{0} and that for some $\varepsilon>0$, $f\left(x_{0}\right) \geq f(x)$ for all $x \in\left(x_{0}-\varepsilon, x_{0}+\varepsilon\right)$. Show that $f^{\prime}\left(x_{0}\right)=0$.

Problem 3. Suppose that X is a compact metric space and that $f: X \rightarrow \mathbb{R}$ is continuous. Show that there is an $x_{0} \in X$ such that for all $x \in X, f\left(x_{0}\right) \geq f(x)$.

Problem 4. Consider $f(x)=x^{2} \cdot \sin \left(\frac{1}{x}\right)$ for all $x \neq 0$. Define $f(0)=0$. Show that $f(x)$ is differentiable for all $x \in \mathbb{R}$ and that $f^{\prime}(x)$ is not continuous at 0 .

Problem 5. The Mean Value Theorem states the following. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous with $f(x)$ differentiable for all $a<x<b$. Then there is a $c, a<c<b$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Prove the Mean Value Theorem.
Problem 6. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable and that $f(z)=z$ is a fixed point. Suppose that $\left|f^{\prime}(z)\right|<1$. Show that there is an $\varepsilon>0$ such that for all $x_{0} \in(z-\varepsilon, z+\varepsilon), f^{n}\left(x_{0}\right) \rightarrow z$ as $n \rightarrow \infty$. Such a fixed point z is called an attracting fixed point. What happens at z if $\left|f^{\prime}(z)\right|>1$? Such a fixed point is called a repelling fixed point.

Problem 7. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable and suppose that $f(z)=0$. Suppose also that $f^{\prime}(z) \neq 0$. Define $g(x)=x-\frac{f(x)}{f^{\prime}(x)}$. Show that z is an attracting fixed point for g.

Problem 8. Determine numerical solutions of the following equations.

$$
\begin{gathered}
\cos (x)=x \\
x^{15}+3 x^{4}-4 x^{3}+x=5
\end{gathered}
$$

Problem 9. Let $f_{\mu}:[0,1] \rightarrow[0,1]$ be defined by $f_{\mu}(x)=\mu \cdot x \cdot(1-x)$ for $0 \leq \mu \leq 4$. Suppose that for some n and some $x_{0} \in[0,1]$, the derivative of $f_{\mu}^{n}(x)$ is zero at $x=x_{0}$. Show that for some $0 \leq k<n, f^{k}(x)=\frac{1}{2}$.

Problem 10. Consider the function $f_{\mu}(x)=\mu \cdot x \cdot(1-x)$. Determine the values of μ such that $f_{\mu}^{3}\left(\frac{1}{2}\right)=\frac{1}{2}$. Show that for one of these values of $\mu \in[0,4], \frac{1}{2}$ is a periodic point of period three. Show that for this value of μ, the derivative $\left.\frac{d}{d x} f_{\mu}^{3}(x)\right|_{x=\frac{1}{2}}=0$.

Problem 11. Consider the function $f_{\mu}(x)=\mu \cdot x \cdot(1-x)$. Determine the values of μ such that $f_{\mu}^{5}\left(\frac{1}{2}\right)=\frac{1}{2}$. Show that for three of these values of $\mu \in[0,4], \frac{1}{2}$ is a periodic point of period five. Show that for these value of μ, the derivative $\left.\frac{d}{d x} f_{\mu}^{5}(x)\right|_{x=\frac{1}{2}}=0$. Thus, these are attracting periodic orbits of period five.

Problem 12. Define $f(x)=\exp \left(-\frac{1}{x^{2}}\right)$ for $x \neq 0$ and $f(0)=0$. Show that for every $n \geq 0,\left.\frac{d^{n} f}{d x^{n}}\right|_{x=0}=0$. What is the Taylor Series for this $f(x)$ centered at $a=0$?

Problem 13. The Taylor Remainder Theorem states the following. Suppose that $f(x)$ is $(N+1)$ times differentiable on $[a, b]$ with $a<x_{0}<b$. Let $a<x<b$, then there is a point ξ between x_{0} and x such that the following holds.

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}}{2}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(N)}\left(x_{0}\right)}{N!}\left(x-x_{0}\right)^{N}+\frac{f^{N+1}(\xi)}{(N+1)!}\left(x-x_{0}\right)^{N+1} \\
& =\sum_{n=0}^{N} \frac{f^{(n)}}{n!}\left(x-x_{0}\right)^{n}+\frac{f^{N+1}(\xi)}{(N+1)!}\left(x-x_{0}\right)^{N+1}
\end{aligned}
$$

Prove the Taylor Remainder Theorem.

