MAA 4211 QUIZ 4 FALL 2017 - JAMES KEESLING

Problem 1. Show that if $f : \mathbb{R} \to \mathbb{R}$ is differentiable at a point x_0 , then f is continuous at x_0 .

Problem 2. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 and that for some $\varepsilon > 0$, $f(x_0) \ge f(x)$ for all $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$. Show that $f'(x_0) = 0$.

Problem 3. Suppose that X is a compact metric space and that $f: X \to \mathbb{R}$ is continuous. Show that there is an $x_0 \in X$ such that for all $x \in X$, $f(x_0) \ge f(x)$.

Problem 4. Consider $f(x) = x^2 \cdot \sin\left(\frac{1}{x}\right)$ for all $x \neq 0$. Define f(0) = 0. Show that f(x) is differentiable for all $x \in \mathbb{R}$ and that f'(x) is not continuous at 0.

Problem 5. The Mean Value Theorem states the following. Let $f : [a, b] \to \mathbb{R}$ be continuous with f(x) differentiable for all a < x < b. Then there is a c, a < c < b such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Prove the Mean Value Theorem.

Problem 6. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuously differentiable and that f(z) = z is a fixed point. Suppose that |f'(z)| < 1. Show that there is an $\varepsilon > 0$ such that for all $x_0 \in (z - \varepsilon, z + \varepsilon), f^n(x_0) \to z$ as $n \to \infty$. Such a fixed point z is called an *attracting fixed point*. What happens at z if |f'(z)| > 1? Such a fixed point is called a *repelling fixed point*.

Problem 7. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuously differentiable and suppose that f(z) = 0. Suppose also that $f'(z) \neq 0$. Define $g(x) = x - \frac{f(x)}{f'(x)}$. Show that z is an attracting fixed point for g.

Problem 8. Determine numerical solutions of the following equations.

$$\cos(x) = x$$

 $x^{15} + 3x^4 - 4x^3 + x = 5$

Problem 9. Let $f_{\mu} : [0,1] \to [0,1]$ be defined by $f_{\mu}(x) = \mu \cdot x \cdot (1-x)$ for $0 \le \mu \le 4$. Suppose that for some n and some $x_0 \in [0,1]$, the derivative of $f_{\mu}^n(x)$ is zero at $x = x_0$. Show that for some $0 \le k < n$, $f^k(x) = \frac{1}{2}$. **Problem 10.** Consider the function $f_{\mu}(x) = \mu \cdot x \cdot (1-x)$. Determine the values of μ such that $f_{\mu}^3\left(\frac{1}{2}\right) = \frac{1}{2}$. Show that for one of these values of $\mu \in [0, 4], \frac{1}{2}$ is a periodic point of period three. Show that for this value of μ , the derivative $\frac{d}{dx}f_{\mu}^3(x)\Big|_{x=\frac{1}{2}} = 0$.

Problem 11. Consider the function $f_{\mu}(x) = \mu \cdot x \cdot (1-x)$. Determine the values of μ such that $f_{\mu}^{5}(\frac{1}{2}) = \frac{1}{2}$. Show that for three of these values of $\mu \in [0, 4]$, $\frac{1}{2}$ is a periodic point of period five. Show that for these value of μ , the derivative $\frac{d}{dx}f_{\mu}^{5}(x)|_{x=\frac{1}{2}} = 0$. Thus, these are attracting periodic orbits of period five.

Problem 12. Define $f(x) = \exp\left(-\frac{1}{x^2}\right)$ for $x \neq 0$ and f(0) = 0. Show that for every $n \ge 0$, $\frac{d^n f}{dx^n}\Big|_{x=0} = 0$. What is the Taylor Series for this f(x) centered at a = 0?

Problem 13. The **Taylor Remainder Theorem** states the following. Suppose that f(x) is (N + 1) times differentiable on [a, b] with $a < x_0 < b$. Let a < x < b, then there is a point ξ between x_0 and x such that the following holds.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''}{2}(x - x_0)^2 + \dots + \frac{f^{(N)}(x_0)}{N!}(x - x_0)^N + \frac{f^{N+1}(\xi)}{(N+1)!}(x - x_0)^{N+1}$$
$$= \sum_{n=0}^N \frac{f^{(n)}}{n!}(x - x_0)^n + \frac{f^{N+1}(\xi)}{(N+1)!}(x - x_0)^{N+1}$$

Prove the Taylor Remainder Theorem.