Determining a Formula for $\sum_{i=0}^{n} i^{k}$

Let $x_{0}, x_{1}, x_{2}, \ldots$ be a sequence. Define $X_{n}=\sum_{i=0}^{n} x_{i}$ be the sum of the sequence up to the nth term. Define $\Delta_{i}\left(\left\{x_{j}\right\}\right)=x_{i}-x_{i-1}$ for $i=1,2, \ldots$. Notice that

$$
\Delta_{i}\left(\left\{X_{n}\right\}\right)=X_{i}-X_{i-1}=\sum_{j=0}^{i} x_{j}-\sum_{j=0}^{i-1} x_{j}=x_{i} \text { for } i=1,2, \ldots
$$

Theorem. Suppose that $X_{n}=\sum_{i=0}^{n} x_{i}$ and that Y_{n} is any sequence such that (1)

$$
\begin{aligned}
& X_{0}=Y_{0} \text { and (2) } \Delta_{i}\left(\left\{X_{n}\right\}\right)=\Delta_{i}\left(\left\{Y_{n}\right\}\right) \text { for all } i=1,2, \ldots \text { Then } X_{n} \equiv Y_{n} \text { for all } \\
& n=0,1,2, \ldots .
\end{aligned}
$$

Proof. Clearly, $X_{0}=Y_{0}$ by (1) of the assumptions. It is also clear that
$\Delta_{1}\left(\left\{X_{n}\right\}\right)=x_{1}=\Delta_{1}\left(\left\{Y_{n}\right\}\right)=Y_{1}-Y_{0}=Y_{1}-X_{0}=Y_{1}-x_{0}$ and thus that $Y_{1}=x_{0}+x_{1}=X_{1}$.
Similarly, $\Delta_{2}\left(\left\{X_{n}\right\}\right)=x_{2}=\Delta_{2}\left(\left\{Y_{n}\right\}\right)=Y_{2}-Y_{1}=Y_{2}-X_{1}=Y_{2}-\left(x_{0}+x_{1}\right)$ and thus,
$Y_{2}=x_{0}+x_{1}+x_{2}=X_{2}$. It should be clear that we can continue this process inductively to show that $Y_{n}=X_{n}$ for all $n=0,1,2, \ldots$.
Example. Find a formula for $X_{n}=\sum_{i=0}^{n} i^{2}$.
Solution. Let $Y_{n}=a \cdot n^{3}+b \cdot n^{2}+c \cdot n+d$. We want to adjust the coefficients $\{a, b, c, d\}$ so that $X_{0}=Y_{0}$ and $\Delta_{i}\left(\left\{X_{n}\right\}\right)=\Delta_{i}\left(\left\{Y_{n}\right\}\right)$ for all $i=1,2, \ldots$. Then we can conclude from the above theorem that $X_{n} \equiv Y_{n}$ for all $n=0,1,2, \ldots$. Now $X_{0}=0=Y_{0}=d$ gives us that $d=0$. Thus, we can simplify $Y_{n}=a \cdot n^{3}+b \cdot n^{2}+c \cdot n$. Now we compute:
$\Delta_{n}\left(\left\{X_{i}\right\}\right)=n^{2}$

$$
\Delta_{n}\left(\left\{Y_{i}\right\}\right)=Y_{n}-Y_{n-1}=a \cdot n^{3}+b \cdot n^{2}+c \cdot n-\left(a \cdot(n-1)^{3}+b \cdot(n-1)^{2}+c \cdot(n-1)\right)
$$

This gives us the equation: $\Delta_{n}\left(\left\{X_{i}\right\}\right)=n^{2}=3 a \cdot n^{2}+(2 b-3 a) n+(a-b+c)=\Delta_{n}\left(\left\{Y_{i}\right\}\right)$
For this equality to hold we must have that

$$
\begin{aligned}
& 3 a=1 \\
& 2 b-3 a=0 \\
& a-b+c=0
\end{aligned}
$$

These equations can be solved to get $a=\frac{1}{3}, b=\frac{1}{2}$, and $c=\frac{1}{6}$. Thus we can conclude that: $\sum_{i=0}^{n} i^{2}=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$ for all n.
Exercise. Find a formula for $X_{n}=\sum_{i=0}^{n} i^{3}$.

