MAA 4212 QUIZ 1 SPRING 2018

Problem 1. Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. What is the radius of convergence R for $f(x)$? What is the power series for $\ln (1+x)$ and what is the radius of convergence?

Problem 2. What is the power series for $\arctan (x)$? What is the radius of convergence for this series?

Problem 3. State the Taylor Remainder Theorem. Apply the theorem to show that $\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ for all x.

Problem 4. Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$. Suppose that each of these series have radius of convergence R_{f} and R_{g}, respectively. Does $f(x) \cdot g(x)$ have a power series? If so, what is the radius of convergence and what are the coefficients?

Problem 5. Show that $\exp (x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ is valid for all x.
Problem 6. Let $f(x)$ be defined by

$$
f(x)= \begin{cases}\exp \left(\frac{-1}{x^{2}}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Show that there is no power series centered at 0 representing $f(x)$.
Problem 7. Suppose that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is valid for $(-R, R)$ with $0<R<\infty$. Let $x_{0} \in(-R, R)$. Show that there is a power series $\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}$ with $f(x)=$ $\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}$ on an open interval about x_{0}. What is the radius of convergence?

