MAA 4212 QUIZ 3 SPRING 2018

Problem 1. Let X be a compact metric space and let $C(X, \mathbb{R})$ be the collection of all continuous functions $f: X \to \mathbb{R}$. For $f, g \in C(X, \mathbb{R} \text{ define } d(f, g) = \sup \{ |f(x) - g(x)| | x \in X \}$. Show that d(f, g) is a metric on $C(X, \mathbb{R})$.

Problem 2. Suppose that $\{f_n\}$ converges to f in $C(X, \mathbb{R})$ in the metric d(f, g) in Problem 1. Show that $\{f_n\}$ converges to f uniformly on X.

Problem 3. Let $I = [a, b] \subset \mathbb{R}$. Suppose that $\{f_n\}$ converges to f in $C(I, \mathbb{R})$ in the metric d(f, g). Show that $\int_a^b f_n(x)dx \to \int_a^b f(x)dx$ as $n \to \infty$. Think of $\int_a^b ()dx : C(I, \mathbb{R}) \to \mathbb{R}$ as a function from $C(I, \mathbb{R})$ to \mathbb{R} . Is this function continuous?

Problem 4. Show that $C(X, \mathbb{R})$ is a complete metric space with the metric d(f, g).

Problem 5. Let $I = [a, b] \subset \mathbb{R}$. Show that the polynomials on I are dense in $C(I, \mathbb{R})$.

1