PRACTICE PROBLEMS FOR TEST 2 - JAMES KEESLING

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on Test 2 .

Problem 1. Estimate $\frac{d^{n} f}{d x^{n}}$ at $x=a$ using the points $\{a-5 \cdot h, a-2 \cdot h, a-h, a, a+h, a+$ $2 \cdot h, a+4 \cdot h\}$. Assume that $f(x)=\exp \left(x^{2}\right)$ and $a=1$. Assume that the accuracy of the calculation of $f(x)$ is 10^{-24}. For which n can this be done? What is the best h ? Estimate the error.

Problem 2. Solve the differential equation $\frac{d x}{d t}=f(t, x)=t^{2} \cdot x$ with $x(0)=2$. Solve using Picard iteration for five iterations. Solve using the Taylor method of order 5 using $h=\frac{1}{10}$ and $n=10$.

Problem 3. Find a Taylor expansion for the solution $x(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots$ for the differential equation $\frac{d x}{d t}=t \cdot x$ with the boundary condition $x(0)=1$. Solve for $\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$. Do this by hand solving for these coefficients recursively. Solve for the coefficients using the Taylor Method program included in your program collection. Can you determine the general a_{n} ?

Problem 4. Simulate rolling ten dice using the dice program. Do this ten times, compute the sum of the dice each time, and record the results.

Problem 5. Use the Queue program to simulate a queueing system for $M / M / 1 / F I F O$ with $\alpha=8$ per hour and $\sigma=10$ per hour for a time period of 100 hours. Simulate a queueing system for $M / M / 2 / F I F O$ with $\alpha=8$ per hour and $\sigma=10$ per hour for a time period of 100 hours. How do the results compare with the theoretical calculations for $\left\{\bar{p}_{n}\right\}_{n=0}^{\infty}$ in each of these cases?

