FALL 2019 PRACTICE TEST 2(1)

JAMES KEESLING

Problem 1. Determine the coefficients to estimate the derivative of $f(x)$ at $x=a$.

$$
\left.\frac{d f}{d x}\right|_{x=a} \approx A_{0} \cdot f(a-4 h)+A_{1} \cdot f(a-h)+A_{2} \cdot f(a)+A_{3} \cdot f(a+h)+A_{4} \cdot f(a+5 h)
$$

Problem 2. A medical test has the property that if it is administered to a person with the disease, the test is positive with probability .95. If the person does not have the disease, the probability of a false positive is .15 . If the disease has a probability of $\frac{1}{500}$ and it is administered to a random person and the test is positive, what is the probability that the person has the disease?

Problem 3. What is the probability of 5 events in an interval of length 10 for a Poisson process with rate $\lambda=3$?

Problem 4. What is the average number in the system for a queue of type M/M/1/FIFO where α is the arrival rate and σ is the service rate with $\alpha<\sigma$?

Problem 5. Solve the following differential equation using Runge-Kutta.

$$
\frac{d x}{d t}=t^{2} \cdot x
$$

Solve over the interval $[0,1]$ using $h=\frac{1}{10}$. Initial conditions are $x(0)=1$.

