MAD 4401 QUIZ 1 FALL 2018 - JAMES KEESLING

Problem 1. Give an estimate of the solution of $\frac{dx}{dt} = t^2 \cdot x$ with x(1) = 2 using **Picard Iteration** with six iterations.

Problem 2. Use the **Euler**, **Heun**, and **Runge-Kutta** methods to produce a numerical estimate of the solution of $\frac{dx}{dt} = t \cdot \sin(x)$ with x(0) = 1. Use $h = \frac{1}{10}$ and n = 10. Compare the results and the errors.

Problem 3 Use the **Taylor Method** to produce a polynomial approximation of the solution to $\frac{dx}{dt} = \sin(t) \cdot \cos(x)$ with x(0) = 1. Make the degree of the polynomial to be 5 and 10.

Problem 4. Use the **Taylor Method** to produce a numerical approximation of the solution to $\frac{dx}{dt} = \sin(t) \cdot \cos(x)$ with x(0) = 1. Use degree 3, 4, 5, and 6. Let $h = \frac{1}{10}$ and n = 10. Compare the solutions and the errors.

Problem 5. Convert the second-order differential equation $\frac{d^2x}{dt^2} + x = 0$, x(0) = 1, x'(0) = 0 to first-order.