MAD 4401 QUIZ 1 FALL 2018 - JAMES KEESLING

Problem 1. Give an estimate of the solution of $\frac{d x}{d t}=t^{2} \cdot x$ with $x(1)=2$ using Picard Iteration with six iterations.

Problem 2. Use the Euler, Heun, and Runge-Kutta methods to produce a numerical estimate of the solution of $\frac{d x}{d t}=t \cdot \sin (x)$ with $x(0)=1$. Use $h=\frac{1}{10}$ and $n=10$. Compare the results and the errors.

Problem 3 Use the Taylor Method to produce a polynomial approximation of the solution to $\frac{d x}{d t}=\sin (t) \cdot \cos (x)$ with $x(0)=1$. Make the degree of the polynomial to be 5 and 10 .

Problem 4. Use the Taylor Method to produce a numerical approximation of the solution to $\frac{d x}{d t}=\sin (t) \cdot \cos (x)$ with $x(0)=1$. Use degree $3,4,5$, and 6 . Let $h=\frac{1}{10}$ and $n=10$. Compare the solutions and the errors.

Problem 5. Convert the second-order differential equation $\frac{d^{2} x}{d t^{2}}+x=0, x(0)=1, x^{\prime}(0)=0$ to first-order.

