MAD 4401 QUIZ 1 SPRING 2018 - JAMES KEESLING

Problem 1. Consider a recurring experiment such that the outcome each time is independent of the previous times that the experiment was performed. Suppose that the probability of a *success* each time the experiment is performed is p, $0 . What is the probability of ten successes in 20 experiments? What is this value for <math>p = \frac{1}{4}$? Use the **simulation** program to do 100 simulations with $p = \frac{1}{4}$ and n = 20. Record the average number of successes in the 100 simulations.

Problem 2. Use the program **dice** to simulate rolling a die fifty times. Simulate tossing a coin fifty times using the program **coin**.

Problem 3. Simulate rolling ten dice using the **dice** program. Do this twenty times, compute the sum of the dice each time, and record the results.

Problem 4. Assume a queueing system with Poisson arrival rate of α and a single server with an exponential service rate σ . Assume that $\sigma > \alpha > 0$. This is an M/M/1/FIFO queue. Determine the steady-state probabilities for n, $\{\overline{p}_n\}_{n=0}^{\infty}$ for this system. Determine the expected number of customers in the system, $\mathbb{E}[n] = \overline{n} = \sum_{n=0}^{\infty} n\overline{p}_n$. The solutions are $\{\overline{p}_n = \left(\frac{\alpha}{\sigma}\right)^n \cdot \left(1 - \left(\frac{\alpha}{\sigma}\right)\right)\}_{n=0}^{\infty}$ and $\mathbb{E}[n] = \frac{\left(\frac{\alpha}{\sigma}\right)}{\left(1 - \left(\frac{\alpha}{\sigma}\right)\right)}$.

Problem 5. Use the **Queue** program to simulate a queueing system for M/M/1/FIFO with $\alpha = 9$ and $\sigma = 10$. Simulate a queueing system for M/M/2/FIFO with $\alpha = 9$ and $\sigma = 10$. How do the results compare with the theoretical calculations for $\{\bar{p}_n\}_{n=0}^{\infty}$ in each of these cases?

Problem 6. Suppose that points are distributed in an interval [0, t] as a Poisson process with rate $\lambda > 0$. Show that the probability of the number of points in the interval being k is given by the following **Poisson Distribution**.

$$\frac{\left(\lambda \cdot t\right)^{k}}{k!} \exp(-\lambda t)$$

Problem 7. Assume that you have a program that will generate a sequence of independent random numbers from the uniform distribution on [0, 1]. Your calculator has a program that is purported to have this property. It is the **rand()** function. Determine a program that will generate independent random numbers from the exponential waiting time with parameter α . The probability density function for this waiting time is given by $f(t) = \alpha \cdot e^{-\alpha \cdot t}$ and the cumulative distribution function is given by $F(t) = 1 - e^{-\alpha \cdot t}$.

Problem 8. Suppose that there are an infinite number of servers in the queueing system $M/M/\infty$. Suppose that the arrival rate is α and the service rate for each server is σ . Determine the steady-state probabilities $\{\bar{p}_n\}_{n=0}^{\infty}$ for this system. Explain how this could be used to model the population of erythrocytes in human blood. What would α and σ be in this case? Determine approximate numerical values for α and σ in this case.

Problem 9. In **Gambler's Ruin** two players engage in a game of chance in which A wins a dollar from B with probability p and B wins a dollar from A with probability q = 1 - p. There are N dollars between A and B and A begins the n dollars. They continue to play the game until A or B has won all of the money. What is the probability that A will end up with all the money assuming that p > q. Assume that $p = \frac{20}{38}$ which happens to be the house advantage in roulette. What is the probability that A will win all the money if n = \$100 and N = \$1,000,000,000? Assume that $p = \frac{20}{38}$ which happens to be the house advantage in roulette. What is the probability that A will win all the money if n = \$100? Estimate this by Monte-Carlo simulation using the **gamblerruin** program in your calculator library.

Problem 10. Suppose that Urn I is chosen with probability $\frac{1}{2}$ and Urn II is also chosen with probability $\frac{1}{2}$. Suppose that Urn I has 5 white balls and 7 black balls and Urn II has 8 white balls and 3 black balls. After one of the urns is chosen, a ball is chosen at random from the urn. What is the probability that the urn was Urn I given that the ball chosen was white?

Problem 11. A test for a disease is positive with probability .95 when administered to a person with the disease. It is positive with probability .03 when administered to a person not having the disease. Suppose that the disease occurs in one in a million persons. Suppose that the test is administered to a person at random and the test is positive. What is the probability that the person has the disease. Solve this exactly using Bayes' Theorem. Estimate the probability by Monte-Carlo simulation using the program **medicaltest** in your calculator library.

Problem 12. Let $f : [a, b] \to [a, b]$ be continuous. Show that $\frac{1}{n} \cdot \sum_{i=1}^{n} f((b-a) \cdot \operatorname{rand}() + a) \cdot (b-a)$ converges to $\int_{a}^{b} f(x) dx$ as $n \to \infty$. This limit is the basic underlying principle of Monte-Carlo simulation.