MAD 4401 SPRING 2020 QUIZ 2 JAMES KEESLING

These problems are to help you become familiar with the principles of numerical integration and the programs in the document Numerical-Methods.tns. The problems will not be collected or graded.

Problem 1. Determine the normalized coefficients for Newton-Cotes integration for n points, $n=2,3,4,5,6,7,8,9,10$

Problem 2. Determine the Newton-Cotes estimate of the integral

$$
\int_{-2}^{3} \sin \left(x^{2}\right) d x
$$

using ten points.

Problem 3. Use Romberg Integration to estimate the integral

$$
\int_{1}^{3} \exp \left(x^{2}\right) d x
$$

Do this using 2^{8} intervals. From the matrix output determine many digits are likely correct?

Problem 4. Suppose that we want to estimate the integral of $f(x)$ on the interval $[0,5]$ using the points $\left\{0, \frac{3}{2}, 5\right\}$. What should the coefficients $\left\{A_{0}, A_{1}, A_{2}\right\}$ be?

$$
\int_{0}^{5} f(x) d x \approx A_{0} \cdot f(0)+A_{1} \cdot f\left(\frac{3}{2}\right)+A_{2} \cdot f(5)
$$

