FALL 2019 QUIZ 6

JAMES KEESLING

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

Problem 1. What is the set $\left\{A_{0}, A_{1}, A_{2}, A_{3}, A_{4}\right\}$ to estimate $\frac{d f}{d x}$ at $x=a$ using the following formula:

$$
\left.\frac{d f}{d x}\right|_{x=a} \approx A_{0} \cdot f(a-2 h)+A_{1} \cdot f(a-h)+A_{2} \cdot f(a)+A_{3} \cdot f(a+h)+A_{4} \cdot f(a+2 h)
$$

Problem 2. Use the above formula to approximate the derivative of $\tan (x)$ at $x=2$.

Problem 3. What is the set $\left\{A_{0}, A_{1}, A_{2}, A_{3}, A_{4}\right\}$ to estimate $\frac{d^{2} f}{d x^{2}}$ at $x=a$ using the following formula:

$$
\left.\frac{d^{2} f}{d x^{2}}\right|_{x=a} \approx A_{0} \cdot f(a-2 h)+A_{1} \cdot f(a-h)+A_{2} \cdot f(a)+A_{3} \cdot f(a+h)+A_{4} \cdot f(a+2 h)
$$

Problem 4. Use the above formula to approximate the second derivative of $\tan (x)$ at $x=2$.

Problem 5. What is the error in the estimate in problems 2 and 4? What is the error estimate in terms of $K \cdot h^{k}$ for what k ?

