MAD 4401 TEST 1 FALL 2018 - JAMES KEESLING

Do all problems.	Each problem	worth 20 points.	Partial ci	redit will b	e given for	correct
reasoning when the	he final answer	may be incorrect.	Credit w	rill be dedu	cted if reas	oning is

NAME _____

wrong even if the final answer is correct.

Problem 1. Solve the equation $\sin(x) \cdot (x^5 + 2) = \cos x$ by the Newton-Raphson method. Give the Newton function. Find a starting point for which the method converges. Give the starting point and the iterations with five digits accuracy. Give the final answer to twelve digits and circle the final answer.

Problem 2. Give the function p(h) estimating the second derivative of $\sin(x^3)$ at x = 1 using the points $\{1 - h, 1, 1 + 3h\}$. Show what you think is best numerical estimate of this second derivative. Explain.

Problem 4. Estimate $\int_0^2 \cos(x^3) dx$ using Romberg Integration using 2^7 subintervals. Give the first column of the result to 5 digits and the last two columns to 12 digits. Circle the best answer. How many digits are correct?

2

Problem 5. State the Mean Value Theorem. State the Intermediate Value Theorem. Give the formula for Taylor Expansion for a function f(x) centered at a.