PROOF THAT THE DISTANCE TO A SET IS CONTINUOUS

JAMES KEESLING

In this document we prove the following theorem.

Theorem. Let X be a metric space with metric d. Suppose that $A \subset X$ is nonempty. Define $f(x) = d(x, A) = \inf\{d(x, y) | y \in A\}$. Then $f: X \to R$ is a continuous function.

Proof. We show that f is continuous at each $x \in X$ by showing that if V is an open set containing f(x), then there is an open set $U \subset X$ such that $x \in U$ and $f(U) \subset V$.

By definition $f(x) = d(x, A) = \inf\{d(x, y) | y \in A\}$. Suppose that $f(x) \in V$ with V open in R. Then there is an $\varepsilon > 0$ such that $B_{\varepsilon}(f(x)) \subset V$.

We claim that $U = B_{\frac{\varepsilon}{2}}(x)$ will be the open set such that $f(U) \subset B_{\varepsilon}(f(x)) \subset V$. To prove this claim, let $z \in B_{\frac{\varepsilon}{2}}(x)$ and let $y \in A$. Then we have the following inequalities from the triangle inequality.

$$d(x,y) + d(x,z) \ge d(y,z)$$

and

$$d(x,z) + d(z,y) \ge d(x,y)$$

Now take the infimum over $y \in A$ in both sides of the above two inequalities.

$$d(x,A) + d(x,z) \ge d(z,A)$$

and

$$d(x,z) + d(z,A) \ge d(x,A)$$

We get the following.

$$d(x, A) + \frac{\varepsilon}{2} \ge d(z, A) \ge d(x, A) - \frac{\varepsilon}{2}$$

Thus we have the following.

$$f(x) + \varepsilon > f(z) > f(x) - \varepsilon$$

This proves that $f(z) \in B_{\varepsilon}(f(x)) \subset V$ and that $f(U) \subset V$.

_		