Problem 1. Show that $K \subset \mathbb{R}$ is compact if and only if K is closed and bounded.

Problem 2. State and prove the Contraction Mapping Theorem.

Problem 3. Let X be a connected space and suppose that $f : X \to Y$ is continuous and onto. Show that Y is connected.

Problem 4. Give an example of a topological space X such that there are disjoint closed sets A and B in X such that there is no continuous $f : X \to [0, 1]$ such that $f(x) = 0$ for all $x \in A$ and $f(x) = 1$ for all $x \in B$.

Problem 5. State and prove the Baire Category Theorem.

Problem 6. Let $C \subset [0, 1]$ be the standard Cantor set. Let $\{x_i\}_{i=1}^\infty$ be any countable subset of \mathbb{R}. Show that $\mathbb{R} \setminus \bigcup_{i=1}^\infty (x_i + C)$ is dense in \mathbb{R}.

Problem 7. Let C be the standard Cantor set. Show that there is a continuous function $f : C \to [0, 1]$ which is onto.

Problem 8. Let X be a metric space with metric d. Show that X is a normal space.

Problem 9. Let X be the space obtained as the quotient space of $[0, 1]$ with the decomposition $\mathcal{D} = (0, 1) \cup \{0, 1\}$. That is, X is the space that you get identifying 0 and 1 in $[0, 1]$. Show that $[0, 1]/\mathcal{D} \approx S^1$.

Problem 10. Show that there is no function $f : \mathbb{N} \to [0, 1]$ which is onto where \mathbb{N} is the set of positive integers.