MTG 5316/4302 FALL 2018 PRACTICE FINAL

JAMES KEESLING

1. Major Theorems and Proofs

In this section state and prove each theorem. The proofs should be complete without being tedious.

Problem 1. Suppose that X is a Hausdorff space. Suppose that A and B are disjoint compact subsets of X. Show that there are disjoint open sets U and V in X with $A \subset U$ and $B \subset V$.

Problem 2. State and prove the Contraction Mapping Theorem.

Problem 3. State and prove the **Baire Category Theorem** for compact Hausdorff spaces.

Problem 4. State and prove the **Tietze Extension Theorem** for normal spaces. State and assume **Urysohn's Lemma** for normal spaces.

Problem 5. Suppose that X is a compact metric space and Y a metric space. Suppose that $f: X \to Y$ is continuous. Show that f is uniformly continuous.

JAMES KEESLING

2. Examples and Minor Proofs

In this section, give brief examples, counterexamples, or quick proofs.

Problem 6. Show that if $A \subset \mathbb{R}$ is connected. Show that A is an interval.

Problem 7. Is it possible to find a continuous function $f : [0,1] \to C$ which is onto where C is the Cantor set.

Problem 8. Define the Cantor set.

Problem 9. Define a continuous function $f: C \to I^2$ which is onto where C is the Cantor set and I^2 is the unit square.

Problem 10. Show that the Cantor set is uncountable.

Problem 11. Give a brief proof that if X is any set, there is no function $f: X \to \mathscr{P}(X)$ which is onto. Here $\mathscr{P}(X)$ is the **power set** of X or the set of all subsets of X.

Problem 12. Let U be an open subset of \mathbb{R}^n . Show that if U is connected, then for every $a \neq b \in U$, there is a continuous $f : [0, 1] \to U$ such that f is one-to-one with f(0) = a and f(1) = b.

Problem 13. State the Chain Connectedness Theorem for connected sets.

Problem 14. Give an example of a connected space that is not arcwise connected.

Problem 15. What does it mean for a space X to be **first countable**? Show that every metric space is first-countable.