QUIZ 2 MTG 5317/4303 SPRING 2019

JAMES KEESLING

Problem 1. Let $f : \mathbb{T}^2 \to \mathbb{T}^2$ be the **Arnold cat map**. By definition f is an automorphism of \mathbb{T}^2 such that $f_* : \pi_1(\mathbb{T}^2) \cong \mathbb{Z}^2 \to \pi_1(\mathbb{T}^2) \cong \mathbb{Z}^2$ is the matrix

$$f_* = \left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right].$$

What are the eigenvalues and eigenvectors of this matrix? How do these affect the map $f: \mathbb{T}^2 \to \mathbb{T}^2$?

Problem 2. Let $f : \mathbb{T}^2 \to \mathbb{T}^2$ be the Arnold cat map, Consider \mathbb{T}^2 as the quotient of $[0,1] \times [0,1]$ under the exponential map. Show that the periodic points of f are the image of the rational points under the quotient map.

Problem 3. Let $f: \mathbb{T}^n \to \mathbb{T}^n$ be such that f_* is given by the matrix

$$\begin{bmatrix} m_{11} & \cdots & m_{1n} \\ m_{21} & \cdots & m_{2,n} \\ \vdots & \ddots & \vdots \\ m_{n1} & \cdots & m_{nn} \end{bmatrix}$$

What condition is necessary for f to be a homeomorphism? When the condition is met is there a homeomorphism g homotopic to f? What is the significance of det(M)?

Problem 4. Let $f : \mathbb{T}^2 \to \mathbb{T}^2$ be the Arnold cat map. How would you find a point of period three? Of period one hundred?

Problem 5. Let $f: \mathbb{T}^2 \to \mathbb{T}^2$ be an automorphism such that f_* is given by the matrix

$$f_* = \left[\begin{array}{cc} 5 & 3 \\ 3 & 2 \end{array} \right].$$

Analyze the behavior this automorphism.

Problem 6. Let $f: \mathbb{T}^n \to \mathbb{T}^n$ be an automorphism such that f_* is given by the matrix

$$M = \begin{bmatrix} m_{11} & \cdots & m_{1n} \\ m_{21} & \cdots & m_{2,n} \\ \vdots & \ddots & \vdots \\ m_{n1} & \cdots & m_{nn} \end{bmatrix}.$$

We say that f is **hyperbolic** provided that for every eigenvalue λ of $M |\lambda| \neq 1$. What are the periodic points of f?