TEST 1, MTG 5317/4303 SPRING 2019, MARCH 15, 2019

JAMES KEESLING

NAME _____

Work all problems. Each problem is worth 20 points. Partial credit will be given for correct reasoning. Credit will be deducted for statements and reasoning that are incorrect.

Problem 1. Let $f, g: X \to \mathbb{R}^n$ be two continuous maps. Show that f and g are homotopic.

Problem 2. Let $p : \mathbb{R} \to \mathbb{S}^1$ such that $p(t) = \exp(2\pi i t)$. Suppose that $f : [0,1] \to \mathbb{S}^1$ is a loop with $f(0) = f(1) = 1 \in \mathbb{S}^1$. Show that there is an $\tilde{f} : [0,1] \to \mathbb{R}$ such that $f \equiv p \circ \tilde{f}$.

1

JAMES KEESLING

Problem 3. State what it means for a toral automorphism $f : \mathbb{T}^n \to \mathbb{T}^n$ to be hyperbolic. Show that Arnold cat map given by the matrix

$$\left[\begin{array}{rr} 2 & 1 \\ 1 & 1 \end{array}\right]$$

is hyperbolic from \mathbb{T}^2 to \mathbb{T}^2 .

Problem 4. State and prove the **Brouwer Fixed Point Theorem** for I^2 .

 $\mathbf{2}$

Problem 5. State the Brouwer Characterization of the Cantor Set.