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Work all problems. Each problem is worth 20 points. Partial credit will be given for
correct reasoning. Credit will be deducted for statements and reasoning that are incorrect.

Problem 1. Let f, g : X → Rn be two continuous maps. Show that f and g are homotopic.

Problem 2. Let p : R→ S1 such that p(t) = exp(2πi t). Suppose that f : [0, 1]→ S1 is a

loop with f(0) = f(1) = 1 ∈ S1. Show that there is an f̃ : [0, 1]→ R such that f ≡ p ◦ f̃ .
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Problem 3. State what it means for a toral automorphism f : Tn → Tn to be hyperbolic.
Show that Arnold cat map given by the matrix[

2 1
1 1

]
is hyperbolic from T2 to T2.

Problem 4. State and prove the Brouwer Fixed Point Theorem for I2.
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Problem 5. State the Brouwer Characterization of the Cantor Set.


