TEST 2, MTG 5317/4303 SPRING 2019, APRIL 24, 2019, KEESLING

NAME ____

Work all problems. Each problem is worth 20 points. Partial credit will be given for correct reasoning. Credit will be deducted for statements and reasoning that are incorrect.

Problem 1. State and prove the **Tychonoff Theorem** for a collection of compact topological spaces.

Problem 2. Let $n \ge 2$. Consider $\mathbb{S}^n/\{x, -x\} = \mathbb{P}^n$. Show that $\pi_1(\mathbb{P}^n) \cong \mathbb{Z}_2$.

Problem 3. State what it means for a topological space to be **Lindelöf**. Show that if X is a metric space with a countable base \mathscr{B} , then X is Lindelöf.

Problem 4. State the Alexander Subbase Theorem.

Problem 5. Suppose that X is a compact metric AR. Show that for any Z and any pair of continuous functions $f, g: Z \to X$, f and g are homotopic.