Closed Newton-Cotes Integration
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This document will discuss Newton-Cotes Integration. Other methods of numerical
integration will be discussed in other posts. The other methods will include the Trapezoidal
Rule, Romberg Integration, and Gaussian Integration.

1 Principle of Newton-Cotes Integration

We only cover the Newton-Cotes closed formulas. The interval of integration [a,b] is
partitioned by the points.
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We estimate the integral of f(z) on this interval by using the Lagrange interpolating
polynomial through the following points.

{(a,f(a)), <a+ b*T“,f <a+ bﬂ“)) ,..-,(b,f(b))}

The formula for the integral of this Lagrange polynomial simplifies to a linear combi-
nation of the values of f(x) at the points

{ _b—a
ri=a+1-
n

In the next section we give a method for calculating the coefficients for this linear

i—0,1,2,...,n}.
combination.

2 The Newton-Cotes Closed Formula

We wish to estimate the following integral.

/a ’ f(z)da



We use the value of the function at the following points {a + i - b*Ta ‘ i=0,1,2,...,n}.
Our estimate will have the following form.
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So, what values should we use for the coefficients and how can we calculate them?
There are several approaches to this. It turns out that these {Ag, A1, ..., Ay} coefficients
will be proportional to the length of the interval, b — a. We use the interval [0, n] and the
points {0,1,2,...,n} and normalize the coefficients we get by dividing by the length of
the interval, n. By this means we get a normalized set of coefficients {ag,a1,...,a,}. We

would then have

Ai=((b—-a)-aq;

as our coefficients for a particular interval [a,b]. Our estimate of the integral will then be
given by the following.
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We now compute the normalized coefficients {ag,a1,...,a,}. Let M be an (n + 1) x
(n + 1) Vandermonde matrix.

1 0 O 0

1 1 1 1
M = Vandermonde([0,1,2,...,n]) = |1 2 22 ... 9n
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Let M” be the transpose of M. Let A be a column vector with entries n - a;. Let B be
a column vector with entries
n o ni—i—l
b, = / z'dr = - .
0 1+ 1

Then we get the matrix equation

MT.A=B.
Solving for A we get the following.
A=(M")""B

Our normalized coefficients are % - A.



Example 2.1. Let n = 5. Determine {ag, a1, as,as,as,as}.

The Vandermonde matrix that was used in the above analysis is the following for n = 5.

10 0 O 0 0
1 1 1 1 1 1
Vandermonde([0, 1,2, 3,4,5]) = 1 g 3 287 élg(li 23423
1 4 16 64 256 1024
|1 5 25 125 625 3125]

The normalized coefficients are the following.

19 25 25 25 25 19
2887967 1447 144 967 288

3 Alternative Method for Determining the Normalized Co-
efficients

As stated at the beginning of this section, the Newton-Cotes estimate uses the integral of
the Lagrange interpolating polynomial through the following points.

(et (a+ 20 (a4 220) ) o)

Consider the points {0, %, %, e 1}. Then the normalized coefficient a; is given by the
following integral formula.

1
a; = / Li(z)dx
0
You can easily verify the numbers in Example 2.1 using the program for the Lagrange
interpolating polynomial and integrating.

lagrange([0,1/5,2/5,3/5,4/5,1], [0,0,1,0,0,0])

The polynomial p given by the program is the Lagrange polynomial that is one at % and
zero at the other points. The coefficient as is given by integrating p. We get the correct
number.



4 TN-Inspire CX CAS Program for Closed Newton-Cotes

Here is a TN-Inspire CX CAS program for the closed Newton-Cotes normalized coefficients.
The input variable is the number n in the above analysis. The output is the column vector
“coef” whose components are the n + 1 normalized coefficients.
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Done

Define newculus(_n)fPrgm
ncanl(.n\ 1.n+1) -+ vander

newMat{1,n+1) - temp
Fori,0,n
i*»lemp[l.ill]
EndFor
vandtrmnndn(lemp)
Fori,0,n

i+l

slemp[l.i\ I]

it
EndFor
(vander‘) 1 - temp' — coef
l- coef - coef

n
Disp coef
EndPrgm

Figure 1: Screenshot of the program Newton-Cotes closed coefficients with an example

5 Program for the Newton-Cotes Integral

Here is a program that computes the Newton-Cotes estimate of the integral ff f(x)dx
using n + 1 equally spaced points in the interval [a, b]. The variable f is the given function
with x as the assumed variable. The variables a and b are the endpoints of the interval of
integration. The variable n is the number of intervals into which [a, b] is subdivided. The
output variable ncot is the estimate of the integral.
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Disp ncot
EndPrgm

Figure 2: Screenshot of the program Newton-Cotes evaluation of the integral

6 Error Analysis of Newton-Cotes

One would expect that the error would grow smaller as we use larger n in the Newton-
Cotes method. It turns out that this is not correct. The reason is that using equally spaced
points, the Lagrange interpolating polynomial may give a very bad approximation of the
function away from the interpolation points. It can be so bad that the integrals of these
polynomials do not converge to the integral of the function f(z) as n — oco. The classic
example is the following function over the interval [—4,4].

1
o) =1
Here is an example of how divergent the Lagrange polynomial can be in this case. The
graph plots H% and the Lagrange polynomial for twenty-one equally spaced points on the

interval [—4, 4].
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Figure 3: Plot of ﬁ and Diverging Lagrange Polynomial




