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Consider the equation f(x) = 0 where f is a continuously differentiable real-valued
function of a real variable. Suppose that z is a point where f(z) = 0, a solution of our
original problem. Newton’s idea was to start with an estimate x0 near z and improve that
estimate by taking the tangent line over x0 and letting x1 be the point where the tangent
line crosses the x−axis. If the point x0 is close enough to z, the estimate x1 will be closer
to z than x0. Graphically we have the following situation. We will explain.
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Figure 1. Graph of a function showing how x1 depends on x0

1. Theory Behind the Method

The formula for x1 in terms of x0 is given by

x1 = x0 −
f(x0)

f ′(x0)

We define the Newton Function to be g(x) = x − f(x)
f ′(x) . This is the formula for x1 in

terms of x0, but ignoring the fact that x0 may have been chosen in some special way. We
observe some properties of this function.

The first note is that f(z) = 0 if and only if g(z) = z assuming that f ′(z) 6= 0. We have
converted the problem from finding a zero for the function f(x) to finding a fixed point
for the related function g(x).

We use the Mean Value Theorem to show that if x0 is close enough to z, then
f(x0) = x1 is closer to z than x0.
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Theorem 1. Suppose that h is continuous on the interval [a, b] and differentiable on (a, b).
Then there is a c, a < c < b such that

f ′(x0) =
f(b)− f(a)

b− a

This is a theorem from Calculus I. We will assume such results for this class.
Note that

g′(x) =
f(x) · f ′′(x)

(f ′(x))2
.

Thus, we have g′(z) = 0. Let h > 0 be such that for all x ∈ [z − h, z + h], |g(x)′| < 1
2 .

What we claim is that for any x0 ∈ (z − h, z + h), g(x0) is closer to z than x0. We now
show this using the Mean Value Theorem. Consider the Mean Value Theorem applied to
the points z and x0. There must be a c between z and x0 such that

g′(c) =
g(x0)− g(z)

x0 − z
=

g(x0)− z

x0 − z

1

2
> |g′(c)| =

∣∣∣∣g(x0)− z

x0 − z

∣∣∣∣ =
|g(x0)− z|
|x0 − z|

.

So, we have that |g(x0)− z| < 1
2 |x0− z|. In particular x1 ∈ [z− h, z + h]. So, by induction

we have that

|gn(x0)− z| <
(

1

2

)n

|x0 − z|.

So, we have that gn(x0)→ z as n→∞.
One more theorem is useful here.

Theorem 2. Suppose that we have any continuous function h(x) and suppose that x0 is
any real number. Suppose that hn(x0)→ z as n→∞. Then h(z) = z.

Proof. Suppose that x0, h(x0), h
2(x0), h

3(x0), . . . , h
n(x0), · · · → z as n → ∞. Apply h to

this sequence. By the continuity of h, we have that h(x0), h
2(x0), · · · → h(z) as n → ∞

by the continuity of h. However, this latter sequence is just the first sequence without the
first term, x0. So, it must also converge to z, h(x0), h

2(x0), · · · → z. This implies that
h(z) = z.

�

Let us call this the Principle of Fixed Point Iteration. If we iterate a function at
a point and the sequence of iterates converges, then it converges to a fixed point of the
function. We have a theory for when and why Newton-Raphson Iteration converges, but
even if we did not have such a theory, if it converged, the result would result in a fixed
point for g(x) and hence a solution for f(x) = 0.
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2. Further Analysis of the Error

In this section we will use the Taylor Series expansion for g(x) to analyze the error
in gn(x0). What we show is that the error is approximately squared each iteration. This
gives us what is called quadratic convergence for the algorithm. Suppose that we are

at a point that is near z where g(x) = x − f(x)
f ′(x) as above and g(z) = z. Remember that

we also have g′(z) = 0. Call the point z + h. Then the power series for g(z + h) has the
following form.

g(z + h) = g(z) + g′(z) · h +
g′′(z)

2
· h2 + · · ·+ g(n)(z)

n!
· hn + · · ·

As pointed out above, for the function g(x) this simplifies to the following form.

g(z + h) = z + 0 · h +
g′′(z)

2
· h2 + o(h2)

So, if x0 = z + h, then the initial error of this estimate of z is h. However, the error of

g(x0) = g(z+h) is approximately g′′(z)
2 ·h2 which is approximately h2. If z+h has n digits

correct, then h < 10−n and h2 < 10−2n. This implies that g(z + h) has approximately 2n
digits correct.

3. Example and TI-Nspire CX CAS Program

In this section we give a screenshot of a program for the Newton-Raphson algorithm
with an example.
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Figure 2. Screenshot of the program NewtonRaphson with an example


