# MAD 4401 ASSIGNMENT 

JAMES KEESLING

Work the following problems. This is for extra credit. The problems also help prepare for Test 2. Use the class periods on April 8 and 10 to work together on the problems. Each person should turn in the assignment individually on Monday 4/13/15.

Problem 1. There are three urns, I, II, and III. Each urn has white balls and black balls. Urn I has 3 W and 4B, Urn II has 7W and 1B. Urn III has 2 W and 6 B . An urn is chosen at random and a ball is chosen at random out of the urn. What is the probability that Urn II was chosen given that the ball was black?

Problem 2. Suppose that a certain bowler will produce a strike with probability .85 , a spare with probability .10 , and have an open frame with probability .05 . Using the bowling program to estimate the probability that such a bowler will bowl 200 or greater in a game.

Problem 3. Consider the differential equation $\frac{d x}{d t}=t^{2} \cdot x$ with initial condition $x(0)=2$. Solve this differential equation numerically on $[0,1]$ using the Euler and Runge Kutta methods with $h=1 / 10$ and $n=10$. Give the estimated values of the points to eight digits.

Problem 4. Determine the Taylor expansion for the solution of the differential equation $\frac{d x}{d t}=t^{2} \cdot x$ with $x(0)=1$. Determine the expansion to the $t^{1} 0$ term, $x(t) \approx a_{0}+a_{1} \cdot t+a_{2}$. $t^{2}+a_{3} \cdot t^{3}+a_{4} \cdot t^{4}+a_{5} \cdot t^{5}+a_{6} \cdot t^{6}+a_{7} \cdot t^{7}+a_{8} \cdot t^{8}+a_{9} \cdot t^{9}+a_{10} \cdot t^{10}$.

Problem 5. Derive the steady-state probabilities for a single server queue $\mathrm{M} / \mathrm{M} / \infty /$ FIFO with service rate $\sigma$ and arrival rate $\alpha$.

