
Numerical Differentiation

James Keesling

1 Theoretical Error in Approximating the Derivative

The most straightforward way to approximate the derivative would be to use the difference
quotient used in the definition of the derivative.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

For a small value of h, f(x+h)−f(x)
h is approximately f ′(x). On the other hand, if we

experiment with this formula we observe that if we take h to be too small, we get 0. Of
course, it is not the case that all derivatives are 0. What causes this error is that if h is so
small that x + h = x in the way x is represented in the computer, then the numerator in
the expression f(x+h)−f(x)

h is zero.
So, what is the best value of h to use to get the most digits accurate in estimating

f ′(x)? The error in our formula is composed of two parts. The first and easiest to analyze
is the theoretical error. The second is caused by roundoff error. Roundoff error comes from
representing the numbers x and x+ h as floating point numbers. It can also arise through
numerical inaccuracies in calculating the function f .

The theoretical error is given by a power series representation for f(x+h)−f(x)
h .

f(x+ h)− f(x)

h
=
f(x) + f ′(x) · h+ f ′′(x) · h22 + · · · − f(x)

h

= f ′(x) +
f ′′(x)

2
· h+

f ′′′

3!
· h2 + · · ·

For small values of h the error is approximately f ′′(x)
2 · h. Obviously, the smaller h is,

the more accurate the representation of f ′(x). However, there is also a roundoff error that
needs to be taken into account.

2 Roundoff Error

Let us suppose that when we represent the value of f(x) in the computer, there is an error of
ε. The worst case in representing the difference quotient would be if the error representing

1



f(x+h) and the error representing f(x) was the same magnitude and opposite sign. Then
the total error representing f ′(x) would be the following expression.

E(h) = K · h+
2 · ε
h

So, while the theoretical error goes to zero as h→ 0, the roundoff error goes to infinity
as h→ 0. What is the best choice of h to give us the best estimate of the derivative? We
need to minimize the error E(h).

dE(h)

dh
= K − 2 · ε

h2

If we set this equal to zero, we come up with a ”best” h0 that will give us the best
accuracy in estimating f ′(x). This is easily seen to be

h0 =

√
2 · ε
K

.

We assume that
√

2·ε
K ≈ 1. Suppose that ε ≈ 10−n. Then

h0 ≈ 10−
n
2

and

E(h0) ≈ 10
n
2 .

In terms of accuracy, if our computer gives us n digits of accuracy and we use the
difference quotient to estimate the derivative, we can expect to get about half of those
digits correct by using the optimal choice of h.

On the other hand, we can use other formulas to estimate the derivative. For instance,
the divided difference formula.

f ′(x) ≈ f(x+ h)− f(x− h)

2 · h

= f ′(x) +
f ′′′(x)

3!
· h2 + · · ·

What is the advantage of this formula? Well, the error function combining the theo-
retical error together with the roundoff error is now given by

E(h) = K · h2 +
ε

h
.

We get a different optimal h0.

2



h0 = 3

√
ε

2K

Now instead of getting half of the digits correct, we can get two-thirds correct. There
are other ways to approximate the derivative so that we can get more and more digits
correct up to the limit of the accuracy of the computer itself.

3 Estimating Higher Derivatives Using Multiple Points

Now suppose that we want to estimate the kth derivative of f(x) at the point x0 and wish
to use the points {x0 − n · h, x0 − (n− 1) · h, . . . , x0, x0 + h, . . . , x0 + n · h} in making the
estimate.

Consider the following formula.

A−n · f(x0 − n · h) + · · ·+A0 · f(x0) + · · ·An · f(x0 + n · h)

hk

We can use a Taylor series expansion to determine what the coefficients {A−n, . . . , A0, . . . , An}
must be to estimate f (k)(x0) and what the theoretical error will be for a particular value
of h. To illustrate, let us use particular values of k and n, k = 2 and n = 2. We will end up
with five equations and five unknowns. The unknowns will be {A−2, A−1, A0, A1, A2}. We
get the equations from the Taylor expansion. We want the Taylor expansion to be equal
to f ′′(x0) with the smallest error possible.

We get the following equations.

A−2 +A−1 +A0 +A1 +A2 = 0

−2 ·A−2 −A−1 + 0 ·A0 +A1 + 2 ·A2 = 0

−4 ·A−2 −A−1 + 0 ·A0 +A1 + 4 ·A2 =
h2

2
−8 ·A−2 −A−1 + 0 ·A0 +A1 + 8 ·A2 = 0

−16 ·A−2 −A−1 + 0 ·A0 +A1 + 16 ·A2 = 0

We define M to be the matrix below, A be the vector of coefficients, and B vector
whose entries are the right hand side of the equations above. We then can convert the
above set of equations into a vector calculation.

M =


1 1 1 1 1
−2 −1 0 1 2
4 1 0 1 4
−8 −1 0 1 8
16 1 0 1 16

A =


A−2
A−1
A0

A1

A2

B =


0
0
2
h2

0
0


3



A = M−1 ·B

When we determine the coefficients, we get the following method of approximating the
second derivative.

f ′′(x0) =
−f(x0 − 2h) + 16 · f(x0 − h)− 30 · f(x0) + 16 · f(x0 + h)− f(x0 + 2h)

12h2
+O(h3)

We can estimate the error by the following formula.

E(h) = K · h3 +
ε

h2

We get the following approximate value for the optimal h.

h0 ≈ 5
√
ε

We should be able to get approximately three-fifths of the digits correct using this h0.

4 TI-89 Program Calculating the Required Coefficients to
Estimate f (k)(x)

Let us now consider a very general case. We want to estimate f (k)(x) using the m points

{x+ n1 · h, x+ n2 · h, . . . , x+ nm · h}.

We assume that m > k. We also assume that the ni’s are distinct. We want to
determine a formula of the form

f (k)(x) =

m∑
i=1

Ai · f(x+ ni · h) +O(hm−k).

We also want to know what would be the optimal h and with what accuracy we can
estimate f (k)(x) using the formula.

Reflecting on the example given in §3, it is easy to see how to handle the general case.
Let M and B be the following matrices.

M =


1 1 1 · · · 1
n1 n2 n3 · · · nm
n21 n22 n23 · · · n2m
...

...
...

nm−11 nm−12 nm−13 · · · nm−1m

B =



0
0
...
k!
hk
...
0


4



Then the matrix of coefficients is given by

A = M−1 ·B.

Note M is the transpose of the Vandermonde matrix for the vector [n1, n2, . . . , nm].
Below is the TI-89 program. The input variable a is the vector [n1, n2, . . . , nm]. The

input variable n is m− 1. The input variable k is the level of the derivative f (k)(x) to be
approximated. The program can be tested using the example worked out in §3.

:numerdif(a,k)
:Prgm
:dim(a)[2]-1 → n
:newMat(n+1,n+1) → vander
:newMat(n+1,1) → coef
:newMat(n+1,1) → temp
:vanderm(a)
:k!/h∧k → temp[k+1,1]
:(vanderT)∧(-1)*temp → coef
:EndPrgm

Note that the numerator of the formula will be accurate to O(hm). Since the denomi-
nator will have hk as a factor, the overall accuracy will be O(hm−k).

5 Another Method of Numerical Differentiation

In this section we give an alternative approach to numerically estimating the derivative.
Consider the general case in the previous section. We want to estimate f (k)(x) using the
m points

{x+ n1 · h, x+ n2 · h, . . . , x+ nm · h}.

However, the way we will do it is to fit a Lagrange polynomial to the function values at
these points. We then take the kth derivative of this polynomial at the point x. It turns
out that this method of estimating the derivative will be the same as the one that we
have already described. As a result, this approach gives us another way to determine the
coefficients given in §4. Let P (x) be the Lagrange polynomial through the points

{(x+ n1 · h, f(x+ n1 · h)) , (x+ n2 · h, f(x+ n2 · h)) , . . . , (x+ nm · h, f(x+ nm · h))}.

Let Li(x) be the Lagrange polynomial through the points

5



{(x+ n1 · h, 0) , (x+ n2 · h, 0) , . . . , (x+ ni · h, 1) , . . . , (x+ nm · h, 0)} .

Then

f(x) =
m∑
i=1

f(x+ ni · h) · Li(x).

Taking the kth derivative of both sides we get the following formula.

f (k)(x0) =

m∑
i=1

L
(k)
i (x0) · f(x0 + ni · h)

So, it is clear that Ai = L
(k)
i (x0).

Note that L
(k)
i (x0) will depend on h as well as x0. Let us apply this method to determine

A−1 in the example in §3 approximating f ′′(x0) using the points {x0 − 2h, x0 − h, x0, x0 +
h, x0 + 2h}. We get

L−1(x) =
2

3
· (x− x0)

h
+

2

3
· (x− x0)2

h2
+

1

6
· (x− x0)3

h3
− 1

6
· (x− x0)4

h4
.

Thus we get

L′′−1(x0) =
4

3 · h2
=

16

12 · h2
.

This was the coefficient that we got using the previous approach.
This approach also allows us to estimate the kth derivative of f(x) at x0 without

computing the coefficients in our first method. We can determine the points {x0 + n1 ·
h, x0 + n2 · h, . . . , x0 + nm · h} for a particular value of h. We then compute the values
of f(x) at each of these points. Then we determine the Lagrange polynomial P (x) which
takes on the values of f(x) at the interpolation points. Then compute the kth derivative
of P (x) and evaluate that derivative at the point x0.

6 Two Useful Programs

We have developed programs that do all of the above steps except one. We need to produce
the vector [f(x0+n1 ·h), f(x0+n2 ·h, . . . , f(x0+nm ·h)]. Once we have that vector of values,
we could either compute the Lagrange polynomial as in §5 or we could use it together with
the coefficients developed in §4 to estimate the derivative by that method. The program
below will produce this vector of function values. The variable f in the program is the
function with assumed variable x. The variable a is the vector of values at which we want
the function f evaluated. The variable n is such that n + 1 is the length of the vector a.
The output vectev is the vector of function values at the vector of values.

6



:vecteval(f,a)
:Prgm
:dim(a)[2]-1 → n
:f → g
:newMat(n+1,1) → vectev
:For i,0,n
:g|x=a[i+1,1] → vectev[i+1,1]
:EndFor
:Disp vectev
:EndPrgm

Here is a program that numerically evaluates the derivative. The variable f is the
function that is to be differentiated at the point a. The variable k is the derivative to be
estimated, f (k)(a). The function variable is assumed to be x. The variable b is the vector
{n1, n2, . . . , nm+1}. The output variable p gives a formula for estimating the derivative that
depends on h. One can then determine estimates by computing p|h = c in the command
line of the home screen for various values of c.

:numdiff(f,a,b,k)
:Prgm
:dim(b)[2]-1 → m
:numerdif(b,k)
:0 → p
:For i,0,m
:p+coef[i+1,1]*f|x=(a+b[1,i+1]*h) → p
:EndFor
:Disp p
:EndPrgm

7


