
Numerical Solution of Ordinary Differential Equations

James Keesling

1 Picard Iteration

The Picard method is a way of approximating solutions of ordinary differential equations.
Originally it was a way of proving the existence of solutions. It is only through the use
of advanced symbolic computing that it has become a practical way of approximating
solutions.

In this chapter we outline some of the numerical methods used to approximate solutions
of ordinary differential equations. Here is a reminder of the form of a differential equation.

dx

dt
= f(t, x0)

x(t0) = x0

The first step is to transform the differential equation and its initial condition into an
integral equation.

x(t) = x0 +

∫

t

0

f(τ, x(τ)) dτ

We think of the right hand side of this equation as an operator G(x(t)) =
∫

t

0
f(τ, x(τ)) dτ .

The problem then is to find a fixed point, actually a fixed function, for G(x(t)). Picard
iteration gives a sequence of functions that converges to such a fixed function. We define
x0(t) ≡ x0 and define the sequence inductively by

xn+1 = G(xn(t))

= x0 +

∫

t

0

f(τ, xn(τ)) dτ.

In another chapter we describe this approach in more detail and show the convergence
to a solution of the initial differential equation.

1



2 Numerical Methods

Numerical solutions of differential equations calculate estimates of the solution at a se-
quence of node points {t0, t1, t2, . . . , tn}. The initial value is given in the initial conditions
x0 at t0. The estimates for the other values {x1, x2, . . . , xn} are based on estimating the
integral

∫

tn+1

tn

f(τ, x(τ)) dτ.

We now give a few methods without explaining the derivation. In the following the
nth–step size is given by hn = tn+1 − tn.

Euler

xn+1 = xn + hn · f(tn, xn)

Modified Euler

xn+1 = xn + hn · f
(

tn +
hn

2
, xn +

hn

2
f(tn, xn)

)

Heun

xn+1 = xn +
hn

2
· (f(tn, xn) + f(tn+1, xn + hn · f(xn, tn)))

Runge-Kutta

xn+1 = xn +
hn

6
[k1 + 2k2 + 2k3 + k4]

where

k1 = f(tn, xn)

k2 = f

(

tn +
hn

2
, xn +

hn

2
k1

)

k3 = f

(

tn +
hn

2
, xn +

hn

2
k2

)

k4 = f(tn + hn, xn + hnk3)

These methods are based on numerical estimates of the integral
∫

tn+hn

tn
f(τ, x(τ)) dτ

using various Newton-Cotes formulas. The Euler method just takes the left value of the
function times the length of the interval as a crude estimate. Euler originally thought of
this as following the tangent line to estimate the next xn+1. The Modified Euler method is

2



based on the Midpoint Rule for estimating the integral. It is the simplest of the Newton-
Cotes open formulas. The Heun method is based on the Trapezoidal Rule of estimating
the integral. It uses the two end points and is the simplest of the Newton-Cotes closed
formulas. Runge-Kutta is based on Simpson’s Rule, another Newton-Cotes closed formula.
Of course, estimates have to be made of the points where the function f(t, x) is unknown.
These estimates have to be accurate enough that the accuracy of the estimate of the integral
is not adversely affected. All of these methods and more like them are generally termed
Runge-Kutta Methods. The one that we have designated Runge-Kutta is the standard one
by that name. It is also sometimes called Fourth-Order Runge-Kutta.

3 Taylor Method

3.1 The Basic Theory

In this method, the Taylor series is used to estimate solutions. The Euler Method can be
considered a Taylor Method of order one. One uses the Taylor series up to the given order.
In the implementation, xn+1 is the left hand side of the equation. The right hand side will
be a function of tn, xn, and hn. We do an example below to illustrate.

x(t + h) = x(t) +
dx

dt
h +

d2x

dt2
h2

2
+

d3x

dt3
h3

3!
+ · · ·

One uses the fact that dx

dt
= f(t, x) to obtain a formula for the various derivatives. The

Chain Rule for functions of several variables is used. By this means one gets the following
formula.

x(t + h) = x(t) + h · f(t, x) +
h2

2

[

∂f(t, x)

∂t
+

∂f(t, x)

∂x
· f(t, x)

]

+ · · ·

Of course, one would terminate this series at some n. That n would be the degree of the
method. The local error would be O(hn+1) and the global error would be O(hn) assuming
a uniform step size of h.

Example 3.1. Find the formula for the Taylor Method of third order for the following

differential equation.

dx

dt
= xt2 x(0) = 1

The second and third derivatives become the following.

d2x

dt2
= xt4 + 2xt

d3x

dt3
= (t4 + 2t)xt2 + 4xt3 + 2x

3



So, we get the following inductive formula for computing the successive xn’s.

xn+1 = xn + hnxnt2n +
h2

n

2
(xnt4n + 2xntn) +

h3

3!
((t4n + 2tn)xnt2n + 4xnt3n + 2xn)

3.2 TI-89 Program for the Taylor Method

Here is a program for the Taylor Method. The variable f is the function assumed to be a
function of t and x. The variables a and b are the initial conditions, t0 and x0, respectively.
The variable k is the degree of the Taylor Method. The variable h is the step size and n is
the number of steps. The output variables are coef , the Taylor formula for xn+1 and soln,
the numerical solution of the differential equation.

:taymeth(f,a,b,k,h,n)
:Prgm
:newMat(1,k+1) → coef
:newMat(n+1,2) → soln
:approx(a) → a
:approx(b) → b
:approx(h) → h
:x → coef[1,1]
:a → soln[1,1]
:b → soln[1,2]
:f → coef[1,2]
:For i,2,k
:coef[1,i]|x=y(z) → g
:g|y(z)=x(t) → g
:d(g,t) → g
:g|d(x(t),t)=f → g
:g|x(t)=x → coef[1,i+1]
:EndFor
:For i,1,n
:b → temp
:For j,1,k
:temp + h∧j/(j!)*coef[1,j+1]|x=b and t=a → temp
:EndFor
:temp → b
:a+h → a
:a → soln[i+1,1]
:b → soln[i+1,2]
:EndFor

4



:EndPrgm

For the example done below with the Euler Method, we get the following output for
the Taylor Method of order k = 3, h = .1 and n = 10.

t0 = 0.0 x0 = 1.0000000000000
t1 = 0.1 x1 = 1.0050000000000
t2 = 0.2 x2 = 1.0201756675000
t3 = 0.3 x3 = 1.0459874721220
t4 = 0.4 x4 = 1.0832293330732
t5 = 0.5 x5 = 1.1330694368407
t6 = 0.6 x6 = 1.1971114656355
t7 = 0.7 x7 = 1.2774807409924
t8 = 0.8 x8 = 1.3769417719573
t9 = 0.9 x9 = 1.4990563119840
t10 = 1.0 x10 = 1.6483945503684

The formula for each step can be determined from the coef output.

xn+1 = xn + h · tn · xn +
h2

2
· (t2n · xn + xn) +

h3

3!
· (tn · (t2n + 3) · xn)

4 Euler, Modified Euler, Heun, and Runge-Kutta

In this section all programs have the same input and the same output variables. This
description applies to all the programs. The variable f is the right hand side of the
original differential equation assuming the variables t and x. The variables a and b are the
initial values t0 and x0, respectively. The variable h is the step size for the node points.
The variable n is the number of iterations. The numerical solution is over the interval
[t0, t0 + n · h]. The output is the variable soln which is an n + 1× 2 matrix with the ti’s in
the first column and the xi’s in the second column.

The data for the Euler Method is given. However, data for the other methods is not
given. Compare the output for those against the Taylor Method given in the previous
section. The x10 value should be close to

√
e = 1.6487212707.

4.1 Euler

Here is the Euler program.

:euler(f,a,b,h,n)
:Prgm
:NewMat(n+1,2) → soln
:approx(a) → a

5



:approx(b) → b
:approx(h) → h
:a → soln[1,1]
:b → soln[1,2]
:For i,1,n
:b+h*f|t=a and x=b → b
:a + h → a
:a → soln[i+1,1]
:b → soln[i+1,2]
:EndFor
:EndPrgm

Example 4.1. Use the Euler Method to solve the following differential equation over the

interval [0, 1] using h = .1.

dx

dt
= t · x

x(0) = 1

The output of the program for this example is below.

t0 = 0.0 x0 = 1.0000000000000
t1 = 0.1 x1 = 1.0000000000000
t2 = 0.2 x2 = 1.0100000000000
t3 = 0.3 x3 = 1.0302000000000
t4 = 0.4 x4 = 1.0611060000000
t5 = 0.5 x5 = 1.1035502400000
t6 = 0.6 x6 = 1.1587277520000
t7 = 0.7 x7 = 1.2282514171200
t8 = 0.8 x8 = 1.3142290163184
t9 = 0.9 x9 = 1.4193673376290
t10 = 1.0 x10 = 1.5471103980101

4.2 Modified Euler

Here is the Modified Euler program.

:meuler(f,a,b,h,n)
:Prgm
:approx(a) → a
:approx(b) → b
:approx(h) → h
:newMat(n+1,2) → soln

6



:a → soln[1,1]
:b → soln[1,2]
:For i,1,n
:f|x=b and t=a → temp
:b+h*f|t=a+h/2 and x=b+h/2*temp → b
:a+h → a
:a → soln[i+1,1]
:b → soln[i+1,2]
:EndFor
:EndPrgm

4.3 Heun

Here is the Heun program.

:heun(f,a,b,h,n)
:Prgm
:approx(a) → a
:approx(b) → b
:approx(h) → h
:newMat(n+1,2) → soln
:a → soln[1,1]
:b → soln[1,2]
:For i,1,n
:f|x=b and t=a → temp
:b+h/2*(temp + f|t=a+h and x=b+h*temp) → b
:a+h → a
:a → soln[i+1,1]
:b → soln[i+1,2]
:EndFor
:EndPrgm

4.4 Runge-Kutta

Here is the Runge-Kutta program.

:rungekut(f,a,b,h,n)
:Prgm
:approx(a) → a
:approx(b) → b
:approx(h) → h
:newMat(n+1,2) → soln

7



:a → soln[1,1]
:b → soln[1,2]
:For i,1,n
:f|x=b and t=a → k1
:f|t=a+h/2 and x=b+h/2*k1 → k2
:f|t=a+h/2 and x=b+h/2*k2 → k3
:f|t=a+h and x=b+h*k3 → k4
:b+h/6*(k1 + 2*k2 + 2*k3 + k4) → b
:a+h → a
:a → soln[i+1,1]
:b → soln[i+1,2]
:EndFor
:EndPrgm

8


