
POWER SERIES

JAMES KEESLING

1. Introduction

In this summary we will cover the basic features of power series. Power series is an
important way to analyze functions in various settings. When a function agrees with its
power series it is said to be analytic. Sometimes one specifies the interval over which
the function is analytic. The functions with power series representation take us beyond
the polynomials. The analytic functions include polynomials, rational functions, the loga-
rithm function, the exponential function, the trigonometric functions, among many others.
Virtually every function with major applications is in this category.

2. The Geometric Series

Of first importance is the geometric series. We will prove the convergence of this
series in this section. The proof is simple, but it is fundamental in what will follow.

Theorem 1. Suppose that |x| < 1, then

∞∑
n=0

xn =
1

1− x
.

Furthermore, if 0 < ε < 1
2 , then

∑∞
n=0 x

n converges uniformly to its limit on the interval
[−1 + ε, 1− ε].
If |x| ≥ 1, then the series diverges.

Proof. Assume that |x| < 1. Let N be a positive integer and let SN =
∑N

n=0 x
n. Then

x · SN =
N∑
n=0

xn+1 =
N+1∑
n=1

xn

and

(1− x) · SN =

N∑
n=0

xn −
N+1∑
n=1

xn = 1− xN+1

which gives us

SN =
1− xN+!

1− x
.

1
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Since |x| < 1, limn→∞ x
n = 0 and thus limn→∞ SN = 1

1−x . This is precisely what we mean
by

∞∑
n=0

xn =
1

1− x
.

For the second part of the proof, let δ > 0 and suppose that 0 < ε < 1
2 . Let x ∈

[−1 + ε, 1− ε]. Let N be such that for all K ≥ N ,
∑∞

n=K(1− ε)n = (1−ε)K
ε < δ. Now for

any 0 ≤ |x| < 1− ε and K ≥ N ,∣∣∣ ∞∑
n=K

xn =
xK

1− x

∣∣∣ ≤ ∞∑
n=K

|x|n =
|x|K

1− |x|
≤

∞∑
n=K

(1− ε)n =
(1− ε)K

ε
< δ.

Thus,
∑∞

n=0 x
n converges uniformly to 1

1−x on [−1 + ε, 1− ε].
It is easy to show that if |x| ≥ 1, then

∑∞
n=0 x

n diverges. We will leave that to the
reader.

�

3. General Power Series and the Radius of Convergence

Suppose that
∑∞

n=0 anx
n is any power series centered at 0. Let

lim sup
n→∞

n
√
|an| = α

where 0 ≤ α ≤ ∞. Let R = 1
α , 0 ≤ R ≤ ∞. Then we have the following theorem.

Theorem 2. The series
∑∞

n=0 anx
n converges for all |x| < R. Furthermore, it converges

uniformly on any interval [−M,M ] with 0 ≤M < R. If |x| > R, then the series diverges.
For x = R or x = −R, the series may converge or it may not converge.

Proof. The case R = 0 is trivial. The proof for R finite can be modified for the case that
R = ∞. So, we assume that R is finite. Let |x| < R. Suppose that N is such that for

all n ≥ N , n
√
|an| < 1

|x| . Note that 1
|x| > α = 1

R . So, for all n ≥ N , n
√
|an||x|n < |x|

R . Of

course, this implies that (
n
√
|an||x|n

)n
<

(
|x|
R

)n
and thus that

∞∑
n=N

(
n
√
|an||x|n

)n
=

∞∑
n=N

|an||x|n <
∞∑
n=N

(
|x|
R

)n
converges. This implies that

∑∞
n=N anx

n converges for |x| < R. This implies that∑∞
n=0 anx

n converges for |x| < R since this last sum adds only a finite number of terms to
the series.
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The fact that this series converges uniformly on any interval [−M,M ] with 0 ≤M < R
follows from the proof for that case in the proof of Theorem 1.

The fact that the series diverges for |x| > R is easy to prove and we leave it as an exercise
for the reader. There are examples where the series may converge or diverge at x = R or
x = −R. �

We say that R as defined above is the radius of convergence for the power series∑∞
n=0 anx

n. Note that the radius of convergence R can be characterized as the largest R
such that the series converges for all x ∈ (−R,R) and diverges for |x| > R. The formula

lim supn→∞
n
√
|an| = α with R = 1

α gives us a way to calculate the value of R, but if we
could determine a value M by any means such the series converges for all x ∈ (−M,M) and
diverges for |x| > M , then M would be the radius of convergence for the series. In §9 we
will give another way which is sometimes useful in determining the radius of convergence.

4. Antiderivatives and Integration of Power Series

Theorem 3. Let f(x) =
∑∞

n=0 anx
n and suppose that the radius of convergence for this

series is R > 0. Let g(x) =
∑∞

n=0
an
n+1x

n+1. Then the radius of convergence for g(x) is

also R and for all |x| < R, g′(x) = f(x).

Proof. Consider the power series
∑∞

n=0 anx
n with radius of convergence R. Note that if

R = 0, then the series only converges for x = 0. So, for a meaningful discussion, we have
assumed that 0 < R ≤ ∞. Now f(x) =

∑∞
n=0 anx

n is well-defined on the interval (−R,R).
Let g(x) =

∑∞
n=0

an
n+1x

n+1. It is easy to check that g(x) is represented by a power series

that also has radius of convergence R. Let |x| < R. Then note that

∫ x

0
f(t)dt =

∫ x

0

( ∞∑
n=0

ant
n

)
dt =

∫ x

0
lim
N→∞

(
N∑
n=0

ant
n

)
dt(1)

= lim
N→∞

∫ x

0

(
N∑
n=0

ant
n

)
dt(2)

= lim
N→∞

N+1∑
n=0

an+1

n+ 1
xn(3)

=

∞∑
n=0

an+1

n+ 1
xn(4)

= g(x)(5)

Going from the first to the second step is because the convergence of
∑∞

n=0 ant
n is uniform

on the interval over which the integration takes place. So, this proves that g(x) is an
antiderivative of f(x) and that g′(x) = f(x). �

We can apply this theorem to several examples. We know from elementary Calculus
that d

dx ln(1 + x) = 1
1+x =

∑∞
n=0(−x)n. By integrating term by term as above we get
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ln(1 + x) + C =

∞∑
n=1

(−1)n+1x
n

n

for all |x| < 1 for some constant C. By evaluating both sides of the equation at x = 0 we
obtain that C = 0. Thus,

ln(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
.

Similarly, d
dx arctan(x) = 1

1+x2
=
∑∞

n=0(−x2)n. Again, by integrating term by term we
get

arctan(x) + C =

∞∑
n=1

(−1)n+1 x
2n+1

2n+ 1

for some constant C for all |x| < 1. By evaluating both sides of the equation at x = 0 we
get that C = 0. Thus,

arctan(x) =

∞∑
n=1

(−1)n+1 x
2n+1

2n+ 1
.

5. Derivatives of Power Series

Now just because the power series
∑∞

n=0 anx
n converges on (−R,R) and even uniformly

on [−M,M ] ⊂ (−R,R) does not mean that the series which is the term-by-term derivative
of that series would necessarily be the derivative of the series. It turns out that this is the
case, but it requires a proof. The proof that we give is indirect.

Theorem 4. Let f(x) =
∑∞

n=0 anx
n and suppose that f(x) has radius of convergence

R. Let g(x) =
∑∞

n=1(n + 1)an+1x
n. Then g(x) also has radius of convergence R and

f ′(x) = g(x) for all x ∈ (−R,R).

Proof. Let f(x) =
∑∞

n=0 anx
n and let g(x) =

∑∞
n=1(n + 1)an+1x

n. Note that g(x) is the
term by term derivative of f(x).

Suppose that R is the radius of convergence for the series that defines f(x). Then

1

R
= lim sup

n→∞
n
√
|an| = α.

However, it is easy to show that

1

R
= lim sup

n→∞
n
√

(n+ 1)|an+1| = α

as well. So, the series representing f(x) and that representing g(x) both have radius of
convergence R. Since f(x) is the term by term integral of g(x), it must be that it is the
antiderivative of g(x). Thus, f ′(x) = g(x) as was to be proved. �
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We have examples of this as well. Since the Geometric Series 1
1−x =

∑∞
n=0 x

n has radius
of convergence R = 1,

1

(1− x)2
=

∞∑
n=0

(n+ 1)xn

also has radius of convergence R = 1.

6. Power Series Centered at an Arbitrary Point

We have been discussing power series centered at 0. We could have defined a power
series centered at a for any real a. This would take the form

∞∑
n=0

an(x− a)n.

We calculate the radius of convergence the same way as in §3 using the coefficients an
of the series. If the radius of convergence is R, then the series centered at a will converge
in the interval (a−R, a+R).

7. The Coefficients

Theorem 5. Let f(x) =
∑∞

n=0(x − a)n with radius of convergence R > 0. Then the

coefficients of the series must satisfy an = f (n)(a)
n! .

Proof. The derivative of f(x) =
∑∞

n=0(x−a)n is another power series with the same radius
of convergence R. Thus f(x) is infinitely differentiable at every point x ∈ (a− R, a + R).

In particular, f (n)(a) exists for every n. However,

f ′(x) =
∞∑
n=0

(n+ 1)an+1(x− a)n.

When we evaluate f ′(x) at x = a, we get f ′(a) = a1. By induction we get that f (n)(a) =
n!an and thus that

an =
f (n)(a)

n!
.

�

8. General Analytic Functions – The Taylor Remainder Theorem

If we have a given function, say sin(x), that we imagine is analytic, we can determine
the power series that should represent it by determining the coefficients from the previous
section. In the case of sin(x) and a = 0 we get that
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an =


0 n = 0 mod 4
1
n! n = 1 mod 4

0 n = 2 mod 4
−1
n! n = 3 mod 4

We thus get a power series.

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

We can easily check that the radius of convergence of the series is R = ∞. The easiest
way is to use the Ratio Test in §8. However, does this power series represent the function
sin(x)? That is, can we say

sin(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

And, does the power series represent sin(x) for all x or perhaps just some x?
For a few functions we can determine the answer to this by integrating or differentiating

functions having known power series as we did for ln(1 + x) and arctan(x) in §4 and
1

(1−x)2 §5. However, for most functions we need to use the following Taylor Remainder

Theorem to determine when the series converges to the given function. We state the
Taylor Remainder Theorem below. Its proof is given at another link.

Theorem 6. Suppose that f(x) is (N + 1) times differentiable on the interval [a, b] with
a < x0 < b. Let a < x0 < b. Then there is a point ξ between x0 and x such that the
following holds.

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′

2
(x− x0)2 + · · ·+ f (N)(x0)

N !
(x− x0)N +

f (N+1)(ξ)

(N + 1)!
(x− x0)N+1

=

N∑
n=0

f (n)

n!
(x− x0)n +

fN+1(ξ)

(N + 1)!
(x− x0)(N+1)

Let us show how to apply this technique to show that

sin(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

We are letting x0 = 0 in Theorem 6 in our application. For a truncated series, the
theorem will take the following form.

sin(x) =

K∑
k=0

(−1)kx2k+1

(2k + 1)!
+

d2K+2

dx2K+2 sin(x)
∣∣∣
x=ξ

(2K + 2)!
x2K+2.
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However, d2K+2

dx2K+2 sin(x)
∣∣∣
x=ξ

is just ± sin(ξ) and the absolute value of this is at most 1. So,

the reminder term is given by∣∣∣∣∣∣∣
d2K+2

dx2K+2 sin(x)
∣∣∣
x=ξ

(2K + 2)!
x2K+2

∣∣∣∣∣∣∣ ≤
|x|2K+2

(2K + 2)!
.

It can be easily shown that |x|
2K+2

(2K+2)! → 0 as K →∞.

The technique can be used to show that the power series for sin(x) and cos(x) converge
when centered at any point a. The trick is to show that the remainder term in the Taylor
Remainder Theorem goes to zero as N →∞ whatever the ξ may be.

9. The Ratio Test

The general method for computing the radius of convergence of a power series was given
in §3. In this section we give another method for determining convergence of a power
series. This is known as the Ratio Test. Suppose that we have a power series of the form∑∞

n=0 anx
n.

Theorem 7. Suppose that

lim
n→∞

|an+1|
|an|

= β.

Then
∑∞

n=0 anx
n converges for all |x| < ρ = 1

β .

Proof. Assume the hypotheses of Theorem 7. Let |x| < ρ. Let δ > 0 be such that

|x| < 1
β+2δ <

1
β = ρ. Let N be such that for all n ≥ N , |an+1|

|an| < β + δ. Then

|an+1x
n+1|

|anxn|
=
|an+1x|
|an|

<
β + δ

β + 2δ
< 1.

This implies that∣∣∣∣∣
∞∑
n=N

anx
n

∣∣∣∣∣ ≤
∞∑
n=N

|anxn| < |aN |
∞∑
n=0

(
β + δ

β + 2δ

)n
<

1

1− β+δ
β+2δ

=
β + 2δ

δ
.

This implies that our series
∑∞

n=0 anx
n converges.

Note that under the assumptions of Theorem 7, if x > 1
β , then the series does not

converge since the individual terms do not go to zero. This implies that ρ = 1
β is the radius

of convergence for the series.
This is a useful way to determine the radius of convergence for many series. However,

it only works if the limit limn→∞
|an+1|
|an| = β exists.

�


