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1. Introduction

Much that is essential in modern life would not be possible without queueing theory. All com-
munication systems depend on the theory including the Internet. In fact, the theory was developed
at the time that telephone systems were growing and requiring more and more sophistication to
manage their complexity. Much of the theory was developed by Agner Krarup Erlang (1878-1929).
He worked for Copenhagen Telephone Company. His contributions are widely seen today as funda-
mental for how the theory is understood and applied. Those responsible for the early development
of what has become the Internet relied on the work of Erlang and others to guide them in designing
this new system. Leonard Kleinrock was awarded the National Medal of Honor for his pioneer-
ing work leading to the Internet. His book [7] reworked Queueing Theory to apply to this new
developing technology.

These notes are being compiled from a seminar in the Department of Mathematics at the Uni-
versity of Florida on Queueing Theory Applied to Emergency Care. The seminar meets weekly and
the material is updated based on the presentations and discussion in the seminar. In the notes an
attempt is made to introduce the theory starting from first principles. We assume some degree of
familiarity with probability and density functions. However, the main distributions and concepts
are identified and discussed in the notes along with some derivations. We will try to develop intu-
ition as well. Often the intuition is gained by reworking a formula in a way that the new version
brings insight into how the system is affected by the various parameters.

If one makes complete rigor the principal goal in Mathematics, then the subject can become
extremely dry. We will be content to be sure that the results are correct and any arguments
elucidating. We will focus on the insights that might be relevant to the various applications that
we have in mind.

We will first introduce Poisson processes. This forms the basic underpinning of elementary
queueing theory. Next we will introduce the simple queue. This is a queueing system with a
single server with Poisson arrivals and exponential service times. We then discuss more complex
queueing systems. As we introduce new ideas we will try to give applications and hint how the ideas
will apply to emergency care. The general applications will range from telephone communications
to stochastic modeling of population dynamics and other biological systems. The most complex
queueing systems are frequently beyond mathematical analysis. This is likely the case for a realistic
model of emergency care. Such cases will be studied by simulation. The tools of simulation will
be gradually developed through the notes. One of the major accomplishments of the seminar is a
realistic model of the flow of patients in the emergency room.
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There are several texts that we recommend on the subject of queueing theory. The book by
Donald Gross, John Shortle, James Thompson, and Carl Harris, Fundamentals of Queueing The-
ory [5] is recommended for those involved in this project. Some others that may be consulted are
Probability, Markov Chains, Queues, and Simulation: the Mathematical Basis of Performance Mod-
eling by William Stewart [9], An Introduction to Queueing Theory and Matrix-Analytic Methods
by Lothar Breuer and Dieter Baum [2], Queueing Theory and Telecommunications: Networks and
Applications by Giovanni Giambene [4], Optimal Design of Queueing Systems by Shaler Sticham,
Jr. [6], and Elements of Queueing Theory, Palm Martingale Calculus and Stochastic Recurrences
by François Baccelli and Pierre Brémaud [1]. Efficiency and reduced waiting times are only part of
the management concerns of emergency care. A valuable general guide to operational improvement
for emergency departments is given in [3].

As mentioned, this material is compiled from a seminar that meets regularly to study the subject
of Queueing Theory Applied to Emergency Care. Here is a picture of the participants at our meeting
on October 25, 2012.

Figure 1. Emergency Care/Queueing Seminar: (Left to Right) Jed Keesling,
Trent Register, Joshua Hurwitz, Jean Larson, James Maissen, Hayriye Gulbu-
dak, Evan Milliken, Jo Ann Lee, David Zhou, Scott McKinley, Lou Block, Adrian
Tyndall (Head of Emergency Services at Shands)

2. Poisson Processes

Randomness is hard to recognize. If points are thought to be random on a line or in the plane,
then we would be suspicious if the points were regular distances apart. On the other hand, if the
points are truly random and independent, then there will appear to be clustering. We will see why
this is so when we cover exponential waiting times in the next section. Arrivals in queueing theory
are assumed to be random and independent, but at some given rate. This is a Poisson process. We
first give the axioms for a Poisson process which intuitively describe a process in which the events
are random and independent. In the following let α > 0 be a real constant.

Definition 2.1. A Poisson process is a random sequence of events such that the following three
axioms hold.

(1) The probability of an event occurring in a small interval of time ∆t is given by

Pr = α ·∆t+ o(∆t).
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(2) If I and J are disjoint intervals, then the events occurring in them are independent.

(3) The probability of more than one event occurring in an interval ∆t is o
(
∆t2

)
.

From these axioms one can derive properties of the distribution of events. The first formula we
will derive is the probability of exactly k events occurring in an interval of length t. To derive the
formula we divide the interval into n equal subintervals each of length t

n . For large enough n, the

probability of an event in each of these intervals is approximately αt
n . The probability that an event

will not occur in a particular subinterval is 1− αt
n . Thus, the binomial probability for k occurrences

is given by

B(n, k) =

(
n
k

)(
αt

n

)k
·
(

1− αt

n

)n−k
.

Using the fact that limn→∞
(
1 + a

n

)n
= ea one can easily calculate the limit of the above.

lim
n→∞

B(n, k) =
(αt)k

k!
exp(−αt)

This calculation tells us the probability of k occurrences in an interval of length t. The proba-
bilities for k = 0, 1, 2, . . . give a Poisson distribution. The average number in the interval is k = αt
and the variance is σ2 = αt. For large αt this is approximately a normal distribution. Below is a
graph of the Poisson distribution for αt = 5, 10, and 20.
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Figure 2. Poisson Distributions

3. Exponential Waiting Times

A Poisson process is equivalent to points being placed on a line by a stochastic process such
that the distribution of distances between the points are independent from the density function
α exp(−αt). If we think of the line as being time and the events as occurring at certain times, the
density function is called the exponential waiting time with rate α or average waiting time 1

α . The

average waiting time for this density function is 1
α and the variance is 1

α2 .
Suppose that we have a Poisson process as described in §2. Suppose that we want to know the

density function for the time to the next event. What is the probability that the next event will
occur between t and t + ∆t? For the time T to the next event to lie between t and t + ∆t, there
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must not be an event in the interval [0, t]. This is the probability of 0 events in the interval of

length t which is (αt)0

0! exp(−αt) = exp(−αt). In addition, there must be an event in the interval
[t, t+∆t]. The probability of this is approximately α∆t. So, by the independence of events in these
two intervals, the probability that both would occur is approximately α∆t · exp(−αt). Dividing by
∆t and taking the limit leads us to the density function, α exp(−αt). So, a Poisson process has
exponential waiting times. It is easy to show that these are independent since events in disjoint
intervals are independent.

On the other hand, it can also be shown that if we have independent exponential waiting times
between events, it will be a Poisson process. It is a good test of your understanding to prove this.

Exercise 3.1. Suppose that points are distributed on a line with the intervals between being inde-
pendent exponential waiting times with parameter α. Show that the points come from a Poisson
process with rate α.
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Figure 3. Exponential Distribution with α = 1

Note that the distribution implies that short times are more frequent than long times since the
probability density function is highest at zero. A longer time is less frequent than a shorter time
since the function is decreasing. It is also helpful to have the cumulative distribution function F (t).
This is the function such that the probability of the time T to the next event being less than t

is given by F (t). Clearly, F (t) =
∫ t
0
α exp(−ατ)dτ = 1 − exp(−αt). The cumulative distribution

function is useful for simulating waiting times. First we give the graph of the cumulative distribution
function with α = 1.

The next step is to figure how to simulate independent exponential waiting times. First we
suppose that we have a method of generating a sequence of independent random numbers from
the uniform distribution on [0, 1]. Such random number generators are usually included with any
modern programming language. We will not go into the theory of how to generate such numbers
or test that they are independent. We will take on faith that it can be done and that the program
available will do that. So, suppose that we have a finite sequence of such numbers {ui}ni=1. With
each of these numbers ui we associate a time from the exponential waiting time α exp(−αt). The
method is straightforward, simply solve ui = F (ti). Since F (t) is monotone increasing, there will
be a unique ti for each ui. In the case at hand, ui = 1− exp(αt). Solving we get

ti = − ln(1− ui)
α

.
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Figure 4. Cumulative Distribution of the Exponential Distribution with α = 1

Since 1−ui also comes from a uniform distribution on [0, 1], we could replace 1−ui by ui in the

formula. Doing so would reduce the computation by one floating point operation: ti = − ln(ui)
α .

Figure 5 gives a randomly generated list of twenty random numbers ui followed by the associated
exponential waiting times with α = 1.

Figure 5. Twenty Independent Exponential Waiting Times with α = 1
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Figure 6. Twenty Independent Samples from 1
π ·

1
1+x2
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Figure 7. Mathematica Program for Poisson Simulation
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4. Independent Numbers from an Arbitrary Distribution

In the derivation and simulation in the last section, the distribution that we were using was
the exponential distribution with probability density function p(t) = α exp(αt) and cumulative
distribution function F (t) = 1 − exp(αt). However, if we wanted to generate a set of independent
random numbers from an arbitrary probability density function, p(t), we would go through the
same process using its cumulative distribution function F (t). We would use a set of independent
random numbers from the uniform distribution on [0, 1], {ui}Ni=1, and then solve for {xi}Ni=1 using
the equation ui = F (xi).

For example, suppose that our probability density function is p(x) = 1
π ·

1
1+x2 . Then the cumula-

tive distribution is F (x) = 1
π · arctan(x). As before we generate twenty independent numbers from

this distribution using random numbers from [0, 1]. Figure 5 gives a list numbers generated from
this distribution.

In the next few sections, we will assume exponential exponential waiting times. The reason is
to be able to make certain calculations. When we derive the Kolmogorov-Chapman differential
equations, we need the processes to only depend on the most recent state. This is called the Markov
property for a stochastic process. If the waiting time to leave a given state is exponential, then the
Markov property will be satisfied. When this assumption is not appropriate, we may have to resort
to simulation. So, the ability to generate independent values from a general distribution will be
valuable tool.

Figure 6 is a program in Mathematica that simulates a Poisson process. The plot is n(t) the
number of events that have occurred in the interval [0, t]. In the simulation, we generate a table of
independent exponential waiting times. We use these times as the times between successive events
in the Poisson process. The output of the various computations in the simulation are shown to
make the program more transparent. In Mathematica one could have hidden this output. Later in
this document we will be simulating much more complex examples. In the program one can change
the number of events n and the rate α.

What are examples of Poisson processes? Radioactive decay is one example. If you take the
transformation of one of the atoms in the radioactive sample as an event, then the sequence of
these decays will be a Poisson process. In telephone networks one generally assumes that a customer
trying to make a call is an event. It is assumed that this is a Poisson process and this assumption
is supported in practice. Of course, the rate α will change with the time of day and day of the
week. We will be assuming that α is constant, but it is not hard to analyze the case that α is time
dependent. The arrival of information packets at a given node in the Internet is assumed to be
Poisson. The distances between successive cars in a lane on a highway are sometimes assumed to
be independent and exponential.

We can also derive a theory of Poisson processes for events in the plane or space. How would
you modify the axioms in these cases? How would the properties that we derived change in these
settings? Can you think of a way of simulating a Poisson process in a region of the plane? In three
space? In Rn?

An example of a Poisson process in the plane would be the location of a species of plant whose
seeds disperse widely from the parent plant. The location of stars in a star chart down to a given
magnitude will be Poisson. The three dimensional location of stars is Poisson. However, the density
α varies through space.
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Figure 8. The von Koch Curve

Figure 9. The Sierpinski Carpet

Figure 10. The Menger Sponge
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One can also define Poisson processes on fractal sets or other spaces having a regular measure.
What do you think would be a good definition? How could you simulate such a Poisson process on
the von Koch curve, the Sierpiński carpet, or the Menger sponge? Figures 8, 9, and 10 give pictures
of these objects if you are not familiar with them.

5. A Simple Queue

In this section we explain a simple queue. This will illustrate the fundamentals of the theory.
There are a number of good references for queueing theory. We recommend Fundamentals of
Queueing Theory by Donald Gross, John Shortle, James Thompson, and Carl Harris [5].

A simple queue has a single server that can serve one customer at a time. The service time is
an exponential waiting time with parameter σ. The service times are assumed to be independent
and independent of arrivals. The arrival rate is Poisson with rate α. If a customer arrives and the
server is occupied, that customer goes to the end of the waiting line. Customers are served in order
of arrival.

There is a notation that has become common in the field that communicates the assumptions
being made about a given queueing system. The case described above is denoted M/M/1/FIFO.
The first M indicates the assumption about arrivals. In this case they are Markovian (Poisson).
The second M indicates the assumption about the service times, that they are exponential waiting
times. The third indicator gives the number of servers. The last indicates the queueing discipline,
that is in what order the waiting customers are served. FIFO indicates that they are served in the
order “first in first out”.

There are also some helpful diagrams that are used to describe this queue. In the one that
follows, the clients are denoted by circles and the service facility by a box. The circle in the box
denotes the client that is being served by that server.

!

! !
!

Figure 11. Diagram of a Simple Queue

We will let the states of the system at a given time to be the number of customers that have
arrived and not completed service. The state n will be in the set {0, 1, 2, . . . }. If the state is n > 0,
then one customer is being served and n− 1 are waiting in line. We can also represent the system
in the following way.

We can also represent this type of queue with the following diagram.

0
α
−→←−
σ

1
α
−→←−
σ

3
α
−→←−
σ

· · ·n
α
−→←−
σ

n+ 1 · · ·

Let pn(t) denote the probability that the system is in state n at time t. We will be assuming a set
of initial probabilities {pn(0)}∞n=0. We will now describe a set of differential equations that govern
the system, the Kolmogorov-Chapman equations. Suppose that we have the following probabilities
at time t, {pn(t)}∞n=0. How can these change in a small interval of time ∆t? Consider the case
n = 0.

p0(t+ ∆t) ≈ σ∆t · p1(t) + (1− α∆t) · p0(t)
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This leads to the differential equation.

dp0(t)

dt
= σp1(t)− αp0(t)

Similarly we can derive a differential equation for each n > 0.

dpn(t)

dt
= σpn+1 + αpn−1(t)− (α+ σ)pn(t)

The system of differential equations determines the behavior of the probabilities through time
after a time t that the values {pn(t)}∞n=0 are known.

If σ > α, we can expect that these probabilities will have a limiting value. We call the set of
these limiting values the steady-state for the system. We can solve for the steady-state by setting
the derivatives equal to zero in the Kolmogorov-Chapman equations. In the case of a simple queue
with σ > α, this leads to the following probabilities.

pn =
(α
σ

)n
·
(

1− α

σ

)
The average number in the system E(n) = n can be calculated.

n =
α
σ

1− α
σ

Consider a simple example. Suppose that α = 9. This could be nine customer arrivals per hour
if the unit of time is an hour. Suppose that σ = 10. At first glance it would seem that this queueing
system should run smoothly. In an hour we would expect nine arrivals. The server could handle
ten in the hour. So, he should be able to finish the work and have time for a rest before the next
hour. However, this näıve analysis does not take proper account of the randomness of the process.
The formula for n above shows that the average number in the system is

n =
9
10

1− 9
10

= 9.

This is much more congested than one would have imagined. A customer arriving at a time
when the system is in steady-state would fine nine customers already in the system and would have
to wait on average ten times as long as one service time 1

σ = 1
10 , that is, the average wait would be

one hour rather than just six minutes.
Let us imagine that this is an approximate of emergency care and a typical time of treatment is

one hour. Then σ = 1 and α = 9
10 . We have changed the time scale, but this does not change the

ratio between α and σ which is still 9
10 . So, n = 9 and the average time that the patient will be in

the emergency care facility is a total of ten hours, ten times as long as the treatment period of one
hour.

What this demonstrates is that it is important to have an accurate model of how randomness is
affecting the system. If we have not properly taken it into account, the congestion that arises due
to randomness will be unexpected and may be overwhelming. In what follows we will be showing
that the congestion that is due to randomness can be lowered to a manageable level by a modest
additional investment of resources.
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6. A. K. Erlang

Historically, Agner Krarup Erlang (1878 - 1929) developed queueing theory to analyze telephone
systems. He worked for Copenhagen Telephone Company during the period that telephone systems
were growing in complexity. Obviously, randomness is an integral part such a system. When
ARPANET was being considered, the pioneers of this precursor of the Internet used the queueing
theory advanced by Erlang and others to show that the system was feasible. One of those involved
in those early days was Leonard Kleinrock [7]. Figure 13 shows him receiving the National Medal
of Honor for his pioneering work leading to the Internet. Queueing theory continues to play a vital
role in analyzing the functioning of the Internet. Figure 12 is a picture of Erlang available from
Wikimedia Commons.

Figure 12. Agner Krarup Erlang
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Figure 13. Leonard Kleinrock Receiving the National Medal of Honor

7. Queue with an Infinite Number of Servers

In practice we will have a finite number of servers. However, in order to determine how many
servers will be adequate, it makes sense to assume an infinite number of servers and see if this might
be helpful in determining what finite number of servers might be adequate. Since every arrival will
have a server available, there will be no waiting line for this system. We will continue to assume
Poisson arrivals at a rate α and exponential waiting times with parameter σ. The system can be
described in our queueing shorthand as M/M/∞. Below is a diagram of this type of queueing
system.

The states of the system are {n = 0, 1, 2, . . . }. However, now the rates are different as represented
by the following diagram.

0
α
−→←−
σ

1
α
−→←−
2·σ
· · ·

α
−→←−

(n−1)·σ
n− 1

α
−→←−
n·σ

n
α
−→←−

(n+1)·σ
n+ 1 · · ·

The steady-state probability of being in each state n is given by the following formula.

pn =

(
α
σ

)n
n!
· e−ασ

So, we see the Poisson distribution again, this time in the context of a queueing system with an
infinite number of servers.

In applications to communication systems and the Internet, α
σ will be large. In that case, the

Poisson distribution will be approximately normal with mean µ = α
σ and variance σ2 = α

σ . In
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Figure 14. Diagram of Queue with an Infinite Number of Servers

practice n will have to be finite. If we choose n to be several, say k, standard deviations beyond
the mean α

σ , then it will be rare that there are more clients than servers.

n =
α

σ
+ k ·

√
α

σ

Exercise 7.1. Suppose that in a certain town there are 200, 000 land-line telephones. Suppose that
these are used on average seven times per day and each use is equally likely at any time of the day.
Assume that the average time of use each time is five minutes and that this is given by an exponential
waiting time. Assume that it is unacceptable for there to be greater than 1

1,000,000,000 proportion of

the time that a telephone connection cannot be made. If you were designing the system, what should
be the capacity for the number of connections in the system?

Exercise 7.2. The number of erythrocytes in the human body is approximately 2− 3× 1013. The
erythrocytes do not reproduce in the human body and have a life-span of approximately 100-120
days. These cells are produced in bone marrow through a process known as erythropoiesis and then
released into the bloodstream. How many erythrocytes are made each day? How long could a person
survive if the erythropoietic system were to shut down completely. Assume that a person could barely
survive with 10% of the normal level of erythrocytes.

8. Queues with a Finite Number of Servers

Now suppose that there are a finite number of servers. Perhaps that finite number was chosen by
the method in the last paragraph of the last section, but we can derive the Kolmogorov-Chapman
equations and the steady-state probabilities without knowing just how the number was determined.
Let us suppose the there are m servers and that any time the system has more than n > m clients,



QUEUEING THEORY WITH APPLICATIONS AND SPECIAL CONSIDERATION TO EMERGENCY CARE 15

the excess n−m clients wait in line for the next available server. This will be an M/M/m/FIFO
queue. Below is a diagram representing the flow between the states of the system.

0
α
−→←−
σ

1
α
−→←−
2·σ
· · ·

α
−→←−

(m−1)·σ
m− 1

α
−→←−
m·σ

m
α
−→←−
m·σ

m+ 1 · · ·

The steady-state probabilities can be easily computed. We let

S = 1 +
α

σ
+

α2

2σ2
+ · · ·+ αm

m!σm
· 1

1− α
mσ

.

If we suppose that mσ > α, then the steady-state probabilities will exist. In that case the
steady-state probabilities will be given by the following.

pn =

{
αn

n!σnS n < m
αn

mn−m·m!σmS n ≥ m

9. Reduction in Waiting Time by Adding a Small Number of Servers

In this section we are interested in determining how much we can reduce the waiting time in
the system M/M/n/FIFO. Suppose that m0 · σ ≥ α. If for m0σ > α, the system would have an
equilibrium value. If m0 · σ = α, then the expected waiting time for a client would be infinite. The
closer m0 · σ is to α, the longer the waiting time would be. So, there could be enormous congestion
for such a queueing system even when m0 leads to an equilibrium value.

How would this system improve if we added just a few more servers? The formulas for the
equilibrium probabilities in §8 do not lend themselves to an easy analysis of this question. However,
we are able to give a valuable estimate of the waiting time for m = m0 + k for k ≥ 1. In this case
the system M/M/m0 + k/FIFO will have an equilibrium value since (m0 + k) · σ > α. Using the
equilibrium probabilities that were derived in the previous section, the expected time waiting in
line for a newly arriving client will be less than 1

kσ . This is independent of the value of m0. In some
applications of this theory m0 may be enormous and time waiting in line could also be very large.
So, just a modest investment – adding a few more servers – could bring the waiting time down to
a very tractable level. Even when m0 is fairly small, this theorem is valuable especially when the
servers are highly paid personnel.

In the section to follow, we will provide a proof of this theorem.
In the section after that we show how queueing theory apples to models of population dynamics.

9.1. Introduction. In this paper we consider the queueing system known as M/M/m/FIFO. It
has been studied in standard books of queueing theory. The system consists of a line of customers
waiting for being served by a server and m servers. We assume the customer arrivals are random
and Poisson with certain rate α, which denotes the average number of customers that come to
the system in 1 time unit. The serving times we assume to be independent and exponentially
distributed, where σ denotes the average number of customers being served by 1 server in 1 time
unit. That makes 1

σ the average time server needs to serve 1 customer. We should also mention
that if the server with exponential service rate σ is kept “busy” all the time, that the output of the
server is also a Poisson process of rate σ.
Furthermore, we assume that the customers queue in order of arrival and that the next customer
in line goes to the first available server. By the waiting time, tω, we mean the time spent in line
waiting for an available server. We can control this waiting time by changing the number of servers.
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9.2. Estimated waiting time formula. The estimated waiting time formula is reached by using
Poisson probabilities and can be found in the standard books of queueing theory, as [?], but we will
derive it here again, to make everything clear and the future proofs more understandable.

Let us assume there are n customers in the system. If n < m, where m is the number of servers,
all of the customers are being served and the rest of the servers are idle. If n ≥ m, then m customers
are being served by m servers and the rest (n−m) of the customers are waiting in the line. What
is the rate of changing the state of the system from 0 customers to 1 customer? It can only happen
if someone comes into the system. The rate of this event is α. The same rate α we get for the
event changing the state of the system from 1 customer to 2 customers and also from n customers
to n+ 1 customers for all n.

On the other hand, what is the rate of changing the state of the system from 1 customer to 0
customers? It can only happen if there is 1 customer in the system (being served by 1 server), the
server finishes serving and customer leaves the system. The rate of this event is σ, which is the
average service rate for 1 server. But if we want the rate of changing the state from 2 customers
to 1 customer, the rate is now 2σ, because there were 2 customers being served by 2 servers and
the service rate for each server is σ. So for n ≤ m, the rate of changing the state from n to n − 1
customers is nσ. For more than m customers in the system, the number stops growing, because the
rate of changing the state from n+ 1 to n customers (for n > m) is mσ. This is because no matter
how many customers are in the system, there are only m working servers and the rate of someone
leaving is mσ.

The situation should be clear from the following diagram:

0 1 2 · · · m m+ 1 · · ·
α

σ

α

2σ

α

3σ

α

mσ

α

mσ

α

mσ

Let p̄n be the steady-state Poisson probability that there are n customers in the system. By
steady-state probability we mean the probability, while the system is in equilibrium, which means
α
σ < m. In the opposite case the waiting time is infinite, even for α

σ = m.

By the diagram, αp̄0 is the probability that the number of customers in the system changes from
0 to 1. Similarly, σp̄1 is the probability for the number of customers to change from 1 to 0. This
gives us αp̄0 = σp̄1, or p̄1 = α

σ p̄0. In the same fashion we get

p̄2 =
α

2σ
p̄1 =

α2

2σ2
p̄0, p̄3 =

α3

3!σ3
p̄0, .... , p̄n =

αn

n!σn
p̄0 ∀n ≤ m,

followed by

(1) p̄m+k =

(
α
σ

)m
m!

p̄0

( α

mσ

)k
for k = 0, 1, 2, .....
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The sum of all possible probabilities must be equal to 1, which gives us equality

1 =

∞∑
k=0

p̄k = p̄0

(
1 +

α

σ
+

α2

2σ2
+ ....+

(
α
σ

)m
m!

(
1 +

α

mσ
+
( α

mσ

)2
+ ....

))
.

The expression in the last bracket is a geometrical series, so we can write

(2) p̄0 =
1

S
, where S = 1 +

α

σ
+

α2

2σ2
+ ....+

(
α
σ

)m
m!

(
1

1− α
mσ

)
.

Until all the servers are taken, customers coming to the system do not wait at all. It means that
for 1 to m − 1 customers in the system, the waiting time for the upcoming customer is 0. For m
customers in the system, the waiting time for the next customer is 1

mσ , since it is the rate that
someone of the m customers is served and 1 server becomes available. In general, the estimated
waiting time for m+ k customers in the system is k+1

mσ . This makes the average waiting time

E(tw) = (m− 1) · 0 +
1

mσ

∞∑
k=0

(k + 1) p̄m+k.

By (1) and (2),

E(tw) =
1

Smσ

(
α
σ

)m
m!

∞∑
k=0

(k + 1)
( α

mσ

)k
.

The last sum can be converted to
(
1− α

mσ

)−2
, which gives us the average waiting time

(3) E(tω) =
1
mσ

1
m!

(
α
σ

)m
S
(
1− α

mσ

)2 ,
where

(4) S =

m−1∑
n=0

1

n!

(α
σ

)n
+

1

m!

(α
σ

)m( 1

1− α
mσ

)
.

We recall that this formula only holds for E(tω) provided α
σ < m, otherwise the waiting time is

infinite.

9.3. The Main Theorems. The main estimate that we give for the waiting time is given by the
first theorem. It is not a precise estimate, although in a certain sense it is best possible.

Theorem 9.1. Let m0 = α
σ be the least integer not less than α

σ . Let m = m0+k. Then E(tω) < 1
kσ .

Furthermore, this estimate is best possible in the sense that for a fixed k and σ and any ε > 0, there
is an α, such that α

σ is an integer and for that value of α and m = α
σ +k = m0 +k, E(tω) > 1

kσ − ε.

Corollary 9.2. Let m0 = α
σ . Then for m = m0 + 1, the average waiting time is less than the

average serving time.
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Proof of Theorem 9.1:

By the formula for the estimated waiting time we have

(5) E(tw) =
1
mσ

1
m!

(
α
σ

)m(
1− α

mσ

)2 · S ,

where

(6) S =

m−1∑
n=0

1

n!

(α
σ

)n
+

1

m!

(α
σ

)m( 1

1− α
mσ

)
.

Without loss of generality, we can rescale the time axis by putting σ = 1. Thus, α = m0,m =
m0 + k, where m0 is the minimal number of servers to ensure the equilibrium of the system.

The formula (5, 6) will change into

(7) E(tw) =

1
m0+k

1
(m0+k)!

mm0+k
0(

1− m0

m0+k

)2
·
(∑m0+k−1

n=0
1
n! m

n
0 + 1

(m0+k)!
mm0+k

0

(
1

1− m0
m0+k

))
and we want to show that E(t) < 1

k . The form can be simplified as follows

E(tw) =

1
m0+k

1
(m0+k)!

mm0+k
0

k2

(m0+k)2
·
(∑m0+k−1

n=0
1
n! m

n
0 + 1

(m0+k)!
mm0+k

0
m0+k
k

) =

(8) =

1
(m0+k−1)! m

m0+k
0

k2 ·
(∑m0+k−1

n=0
1
n! m

n
0 + 1

(m0+k−1)! m
m0+k
0

1
k

) .
By multiplying E(tw) with k and inversing it, the inequality we want to prove changes to

k E(tw) =

1
(m0+k−1)! m

m0+k
0

k
∑m0+k−1
n=0

1
n! m

n
0 + 1

(m0+k−1)! m
m0+k
0

< 1,

followed by

(9)
1

k E(tw)
=
k
∑m0+k−1
n=0

1
n! m

n
0

1
(m0+k−1)! m

m0+k
0

+

1
(m0+k−1)! m

m0+k
0

1
(m0+k−1)! m

m0+k
0︸ ︷︷ ︸

=1

> 1.

The first part of the theorem is proved by (9). To show that the given estimate is best possible it
remains to prove

(10) lim
m0→∞

k (m0 + k − 1)!
∑m0+k−1
n=0

1
n! m

n
0

mm0+k
0

= 0.

By restriction
m0+k−1∑
n=0

1

n!
mn

0 ≤ em0 ∀m0,
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and by using Stirling formula

(m0 + k − 1)! ∼
√

2π (m0 + k − 1)m0+k− 1
2 e−m0−k+1,

we can restrict the limit as follows

lim
m0→∞

k (m0 + k − 1)!
∑m0+k−1
n=0

1
n! m

n
0

mm0+k
0

≤ lim
m0→∞

k
√

2π (m0 + k − 1)m0+k− 1
2 e−m0−k+1 em0

mm0+k
0

.

Finally, by processing the limit we get

k
√

2π e1−k lim
m0→∞

(
m0 + k − 1

m0

)m0+k

(m0 + k − 1)−
1
2 = k

√
2π · 0 = 0

as desired.

�

10. Birth-Death Models

Queueing theory is a natural tool for producing models for population dynamics or epidemiology.
These models are useful when the randomness of system is an important consideration. First let
us consider a model where the system is a simple birth-death process. Think of n ∈ {0, 1, 2, . . . } as
the size of the population being considered. Think of λn as being the rate at which the population
goes from n to n+ 1 for n ≥ 0. Think of µn as being the rate that the population goes from state
n to n− 1 for n ≥ 1. The following diagram represents the system so described.

0
λ0

−→←−
µ1

1
λ1

−→←−
µ2

· · ·
λn−1

−→←−
µn

n
λn
−→←−
µn+1

n+ 1
λn+1

−→←−
µn+2

n+ 2 · · ·

The steady-state probabilities of this system can be computed easily provided the conditions are
met for them to exist. The first condition is that the following sum be finite.

S = 1 +

∞∑
n=1

n−1∏
k=0

λk
µk+1

If S <∞, then the steady-state probabilities are given by the following.

p0 =
1

S

pn =

∏n−1
k=0

λk
µk+1

S
for n ≥ 1

There is another condition required for the steady-state probabilities to exist in addition to
S <∞. The probability of an infinite number of transitions to occur in a finite period of time must
be zero. We will not go into this requirement in detail. It will not occur for a realistic model of the
type considered in these notes.

For many populations λn = n · λ where λ is the birth rate for an individual in the population.
Similarly, we often have µn = n · µ where µ is the death rate for an individual. On the other
hand, the individual birth and death rates could vary with population size. So, there is good
reason to present the model in this generality. The queueing systems we have already discussed are



20 JAMES KEESLING

birth-death processes. So, the applications of birth-death processes are much more general than to
populations of organisms.

In the next section we discussion applications to Island Biogeography as developed by MacArthur
and Wilson in 1967 [8].

11. MacArthur-Wilson Model for Island Biogeography

The simplest model for a population on an island is called immigration with death. This would
be a setting where immigration to the island occurs at a rate α. Once individuals of the population
have immigrated to the island, they do not reproduce but die at an individual rate µ. This could
happen if the conditions on the island were not conducive for the species to reproduce. If the
species were a plant that required some special condition to produce seeds and this condition was
not satisfied on the island, then we would have this setting.

Let us calculate the steady-state probabilities for this model using the approach of the last
section. The diagram for this system is given below.

0
α
−→←−
µ

1
α
−→←−
2·µ
· · ·

α
−→←−
n·µ

n
α
−→←−

(n+1)·µ
n+ 1

α
−→←−

(n+2)·µ
n+ 2 · · ·

It is simple enough to make the calculations required in this setting.

S =

∞∑
n=0

αn

n! · µn
= exp

(
α

µ

)

pn =
1

n!
·
(
α

µ

)n
· exp

(
−α
µ

)
for n ≥ 0

You may recognize this from §7. The calculations are the same as M/M/∞ and in fact we can
think of the server as death in this case. Of course, in this case there are enough servers to serve
each client no matter how many there may be.

A quantitative theory of island biogeography was developed by Robert MacArthur and Edward
Wilson [8] to try to explain the quantity and diversity of species found on an island. They did
not consider the simple immigration with death model. However, they did consider the following
simple model that we now describe.

Suppose that an invasive species arrives at an island at a rate α. Suppose that once the species
has migrated to the island it has an individual birth rate of λ and individual death rate of µ.
Suppose that the carrying capacity for the species on the island is K. The carrying capacity is the
maximum level that the population can attain on the island. Then we can model the population
on the island in the following way. Let S be the following sum.

S = 1 +
α

µ
+
α · λ
2 · µ2

+
α · 2 · λ2

3 · 2 · µ3
· · · α · (K − 1)! · λK−1

K! · µK

= 1 + α ·
K−1∑
n=0

λn

(n+ 1)µn+1

Then the steady-state probabilities for the population being in state n is given by the following.

p0 =
1

S
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pn =
α · λn

(n+ 1)Sµn+1
for 1 ≤ n ≤ K

The formulas assume that the immigration rate α is negligible once the population is present on
the island.

The graph in this section gives the population model for α = .01, λ = 2, µ = 1, and K = 1000.
For these parameters, the

992 994 996 998 1000

0.1

0.2

0.3

0.4

0.5

Figure 15. Graph of the MacArthur-Wilson Island Population Model
α = .01, λ=2, µ = 1, K=1000

For these parameters, p0 ≈ 9.32 · 10−297 ≈ 0. Note from the graph that pK ≈ .5. Note also that
the graph is only for 990 to 1000. The other values of pn are so close to zero as to be negligible.
This seems very realistic and probably shows that the model is lacking some essential feature. It
is probably not the case that the individual birth and death rates are constant for all 1 ≤ n ≤ K.
Likely the birth rate diminishes with the size of the population and the death rate increases with
the size of the population. Note also that pK−1 ≈

µ
λ . In fact, a good approximation for pn is given

by

pK−n
1− p0

≈
(
µ
λ

)n
1

1−µλ

In the above case this would give pK=1000 ≈ 1
2 and pK−1=999 ≈ 1

4 .
There are other questions that might be asked about this model to elucidate its behavior. How

long will the population be expected to persist on the island? That is, how long until it dies out?
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After extinction, there is an average waiting time of 1
α before the next arrival. Let us denote T as

the average time to extinction. From the Ergodic Theorem we have that

p0 =
1
α

1
α + T

However, we have a value for p0, namely, p0 = 1
S . From that we can calculate T .

T =
S − 1

α
=

K−1∑
n=0

λn

(n+ 1)µn+1

In this form, the result may not be very useful. However, here is an approximation that gives
valuable intuition to the time to extinction.

T ≈

(
λ
µ

)K+1

K · (λ− µ)

This estimate is valid when K is large and µ
λ is small. Note that if the carrying capacity K is

increased by one, then the average time to extinction is increased approximately by a factor of λ
µ .

From the analysis in the next section, the probability of a short extinction time is approximately µ
λ .

This is when the population stays small and never reaches the carrying capacity. The probability
of a long extinction time is approximately 1− µ

λ . In this case the population reaches the carrying
capacity. Let us denote the long extinction times by T ′. The long times are approximately given
by:

T ′ ≈
λ ·
(
λ
µ

)K+1

K · (λ− µ)2

Exercise 11.1. Suppose that λ = 1.2 birth per year and µ = 1 death per year for a species.
Suppose that the carrying capacity for the species on a given island is K = 1, 000. What is the
average time to extinction? What is the average long extinction time? What are these values if
K = 1, 000, 000?

12. Logistic Modification of the MacArthur-Wilson Model

The MacArthur-Wilson model of the previous section seems rather näıve. It hardly seems likely
that the birth (λ) and death (µ) rates would stay constant until the carrying capacity (K) is reached
and then a sudden precipitous change takes place. It is more likely that there is a steady decline
of the birth rate or increase in the death rate up to the carrying capacity. We describe an example
one such model. In the model we let the carrying capacity of the island be K and let λn = λ · K−nK .
We let µ be constant. We think of λ as the intrinsic birth rate. As the population increases and
competition for resources becomes more intense, the birth rate declines.

Here are the limiting probabilities for this model.
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S = 1 +
α

µ
+
α · λ · (K − 1)

2 · µ2
+
α · λ2 · (K − 1) · (K − 2)

3!µ3
+ · · ·

= 1 +
α

µ
+

K∑
n=2

α · λn−1 ·
∏n
i=2(K − i+ 1))

n! · µn

p0 =
1

S

p1 =

(
α
µ

)
S

pn =

(
α·λ(n−1)·

∏n
i=2(K−i+1))

n!·µn

)
S

n ≥ 2

Below is a plot of pn for 2 ≤ n ≤ K. It appears from the graph that the population is approxi-
mately normally distributed as we might expect in a realistic setting.
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Figure 16. Graph of Logistic MacArthur-Wilson Population
α = .01, λ=2, µ = 1, K=1000

In fact we can show that if p0 ≈ 0, then pn is approximately a binomial distribution with K
events and probability of success equal λ

λ+µ . So, the mean population (if present) would be K · λ
λ+µ .

The variance would be K · λ·µ
(λ+µ)2 . With the above parameters p0 ≈ 1.5 · 10−472 ≈ 0. So, using this
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binomial approximation just mentioned, we have a mean population of approximately 667 with a
standard deviation of 14.9. This seems a good fit for the graph.

Even if p0 6≈ 0, we can still approximate the conditional probabilities pn
1−p0

for n ≥ 1.

pn
1− p0

≈
(
K

n

)
·
(

λ

λ+ µ

)n
·
(

µ

λ+ µ

)K−n
13. Probability of Extinction

An island population has to contend with limited resources. This is due to the limiting size
of the island. This is what produces the limited carrying capacity. Due to this limited carrying
capacity, the population will become extinct with probability one. However, we can study the
process by imagining that there are other immigrations after the extinction. For a population with
large resources available, there is little loss in assuming that the population could grow without
bound. In this case there is a positive probability that the population will never become extinct.
In this section we give an indication why this is the case.

Suppose that we have a population that could grow without bound. The states would then be
S = {0, 1, 2, . . . }. Suppose that the individual birth and death rates are λ and µ, respectively.
Then this system can be represented by the following diagram.

0
←−
µ 1

λ
−→←−
2·µ
· · ·

(n−1)·λ
−→←−
n·µ

n
n·λ
−→←−

(n+1)·µ
n+ 1 · · ·

In this case there will be long-term probabilities associated with the system. However, the sum
of the pn will not be one. Assume that λ > µ. Let us follow the system until either the population
becomes extinct, that is, n = 0, or until the population reaches some prescribed level, say n = N .
This system can be modeled as a discrete Markov chain with states S = {0, 1, 2, . . . , N} and with
the following transition probabilities. Assuming 0 < n < N , the probability of going from n to
n+ 1 is

pn,n+1 =
nλ

nλ+ n mu
=

λ

λ+ µ
.

The probability of going from n to n− 1 is similarly given by

pn,n−1 =
µ

λ+ µ
.

The states n = 0 and n = N are absorbing states in this analysis. From finite Markov chain
theory we can determine the probability of ending in state 0 or N starting in state n. Let us use
un to denote the probability of ending in state 0 starting in state n. The 1 − un will denote the
probability of ending in state N starting in state n. These probabilities are given below.

un =

(
µ
λ

)n
1−

(
µ
λ

)N
1− un =

1−
(
µ
λ

)n
1−

(
µ
λ

)N
We have approached the problem this way so that we can use the theory of finite Markov chains

to see what the probabilities are for reaching either of these two absorbing states. However, in the
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case we started with N =∞. Taking in the limit in the formulas above we get that the probability
of a population at level n going extinct is given below.

un =
(µ
λ

)n
The probability of never going extinct is given by the following.

1− un = 1−
(µ
λ

)n
So, for a population not limited by resources and starting in state n, we get that the steady-state

probabilities are given by the following.

p0 =
(µ
λ

)n
pn = 0 for n > 0

So, the sum of these steady-state probabilities is not one. It is also the case that if the population
does not become extinct, then for any N , the probability is one that the population at some time
t will exceed N and never be N or less for all time greater than t.

14. Acuity Analysis for Emergency Care

In this section we analyze a simple queueing system that illustrates a serious problem encountered
in emergency care. The problem is that those patients who arrive and are assigned a high acuity
level on arrival are given first priority in being treated. The lower acuity level patients have low
priority and must wait until all of the high acuity patients have been treated before their treatment
begins.

There are give acuity levels in emergency care. These are standardized by the Emergency Severity
Index or ESI number. The details of the ESI classification system can be found at the following
link maintained by the Agency for Healthcare Research and Quality.

Our mathematical model is a simplified version of this system. We assume just two levels of
acuity. The first level has priority. Even if a patient from the second level of acuity is being
treated and a first level patient arrives, the treatment is interrupted and the first priority patient
immediately begins treatment. We assume that there is just one server to begin with. Later we
will develop a more refined model. The purpose of the model is to show how congestion can occur
by the introduction of a priority treatment system.

The parameters for this system is the following α1 = α · p1, the arrival rate of high priority
patients. We denote the arrival rate of the low priority patients by α2 = α · p2. We assume that
these are independent Poisson systems. The service rate for a high priority patient is σ1. The
service rate for a low priority patient is σ2. There are two lines, one for the priority one patients
and one for the priority two patients. The only time that priority two patients are treated is when
there are no priority one patients in the system. We visualize the system in the following way.

The patients in the first queue can be treated as an M/M/1/FIFO system. To those patients
and the facility, the other patients are virtually invisible. It is when only the system consisting of
the first priority patients is in state zero that the patients in the second level of priority can be
treated.

We have already analyzed the M/M/1/FIFO system. With the parameters that we have for
that system we have the following results for the first priority patients.

http://www.ahrq.gov/research/esi/esi1.htm
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Figure 17. Priority Queue with Two Levels of Priority

pn =

(
α1

σ1

)n
·
(

1− α1

σ1

)

n = E(n) =
α1

σ1(
1− α1

σ1

)
From this information we can determine the average time that it takes from the instant that the

priority one system goes from empty to non-empty to when it returns to empty once again. Let us
call this time T . The Ergodic Theorem gives us the formula.

p0 =

(
1− α1

σ1

)
=

1
α1

1
α1

+ T

This gives us the following value for T .

T =
1

σ1 − α1

We can now determine the average time for the priority patient to complete his/her treatment.
Let us label this time τ .

τ =
σ2

σ2 + α1

( ∞∑
n=0

(n+ 1) · 1

σ2 + α1

(
α1

σ2 + α1

)n
+ T

∞∑
n=1

n ·
(

α1

σ2 + α1

)n)
This simplifies to the following.

(11) τ =
σ1

(σ1 − α1) · σ2
We are now in a position to at least give the average times that patients will spend in the system

given the number of patients already present. The priority one patients will spend an average of
(n+ 1) · 1

σ1
time in the system. From the above formula for n for the priority one patients, we get

the following average time.

(n+ 1) · 1

σ1
=

1

σ1 − α1

Now suppose that a patient comes into the system with n1 priority one patients in line and n2
priority two patients in line. Let us call the time to complete service for an arriving priority one
patient T1(n1, n2) and the time to complete service for the second priority patient T2(n1, n2). If
the patient is priority one, then the time waiting is the following.
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T1(n1, n2) = (n1 + 1) · 1

σ1
The n2 priority two patients play no role in how long it will take this patient to finish treatment.
How long will it take for a priority two patient to finish treatment coming to a system with n1

priority one patients and n2 priority two patients? First, the system must be cleared of all priority
one patients. This will include the n1 patients already there plus any others that might arrive
during the time that these n1 are being treated. The time for the priority one system to get to zero
from n1 is just n1

σ1
. On the other hand, once the priority one system is in state zero, then the time

for the n2 priority two patients to complete treatment is just n2 · τ where τ was computed above.
Thus, the total time for the priority two patient to complete treatment will be the following.

T2(n1, n2) =
n1
σ1

+ (n2 + 1) · τ =
n1
σ1

+
(n2 + 1) · σ1

(σ1 − α1) · σ2
It would be good to know the average waiting time for patients who are assigned priority two.

To do this we would need to compute the long-term probabilities p(n1,n2) of being in each state

(n1, n2). We do not have simple formulas for these at the present time. However, we still have
discovered formulas for the total time waiting and being served.

15. Acuity Analysis of Emergency Care - Continued

Consider the two level priority queue that was discussed in the last section. Assume that the
parameters α1, σ1, α2 and σ2 represent that arrival rate and service rate for the priority one and
two level patients, respectively. We now derive the service time τ in (11) in a simpler way. The
service time, τ , for a priority two patient can be thought of as a sum of the basic service time, 1

σ2
,

together with an interruption time, S, due to the arrival of priority one patients..

τ =
1

σ2
+ S

The interruption time can be seen to be given by the following equation.

S = α1 ·
(

1

σ2
+ S

)
· 1

σ1
We can solve for S and substitute into the equation for τ to get the formula that we got by a

more complicated process in the previous section.

τ =
σ1

(σ1 − α1) · σ2
However, let us write τ in a different way.

(12) τ =
1
σ2(

1−
(
α1

σ1

))
In the form of (12) we can see that τ is the average service time without interruption 1

σ2
divided

by the probability that the priority one system is in the zero state 1 − α1

σ1
. This tells us precisely

how the service time is being increased by the interruptions of priority one patients and how to
adjust.
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Consider an example. Suppose that the priority one system has α1 = 9 and σ1 = 10. Then
the traffic intensity is α1

σ1
= 9

10 . In this case, we get a dramatic change in the service time for the
priority two patients.

τ = 10 · 1

σ2
The actual service time is ten times what it would normally be without interruptions. This is

true for every priority two patient in front of this patient. If there are five patients in front of this
patient, then the total time in the system will be sixty times the time it would normally take for
that patient finally complete treatment. This makes more clear how assigning priority can make
the system extremely congested.

Note also that if we had α1 = 9, α2 = 1
2 , σ1 = 10, and σ2 = 10, then if there were no distinctions

between priority one and two patients, we would have a M/M/1/FIFO queueing system with
α = 9.5 and σ = 10. The system would be in equilibrium even though there might be longer lines

than would be desirable. The actual average n =
9.5
10

1− 9.5
10

= 19. Let is compare this with the two

priority system. The service rate for priority two patients must be adjusted. The new rate is not
σ2 but

σ̂2 =
1

τ
= σ2 ·

(
1− α1

σ1

)
In the case we have been considering, σ̂2 = σ2

10 . The system is also at equilibrium since α2 = 1
2 <

σ̂2 = 1. However, the average time being served for a priority two patient is ten times the service
time. So, if there are three priority patients in line before that patient arrived, then the total time
being served would be forty times the service time.

We will have a clearer picture when we can compute the steady-state probabilities. However, the
model is giving a sense of the congestion and inconvenience that arises through the priority system.

Of course, in emergency care, there are compelling reasons that priority one patients are treated
first. They are facing life-threatening circumstances. However, the overcrowding and gridlock that
some emergency rooms are now facing make it clear that something must be done to bring relief to
those enduring the long waiting times getting treatment. The average median time for emergency
care from registration to discharge is more than four hours. This is several times the median time
that the care itself would require.

16. Higher Levels of Acuity

Now consider the case that we have several levels of acuity: priority 1, priority 2, . . . , priority
n. Each level takes priority over those levels below in the same fashion as the case above. Below is
a diagram that illustrates this situation.

In this case we can also derive the modified service time for those in priority n.

τn =
1
σn

1−
∑n−1
i=1

αi
σi

Of course, for each level of priority we also have a modified service time, namely:

τm =
1
σm

1−
∑m−1
i=1

αi
σi

.
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Figure 18. Priority Queue with Multiple Levels of Priority

For an equilibrium to exist, it is clear that σi > αi must hold for all for all 1 ≤ n. We can now
see also that

n−1∑
i=1

αi
σi

< 1

must hold.
There is also modified rate of service for each i, namely:

σ̂i = σi ·

1−
i−1∑
j=1

αj
σj

 .

For each of these modified rates of service, σ̂i > αi must hold for an equilibrium to exist. So,
there are more criteria that must hold for equilibrium than first meets the eye.

Note that there is an easy fix for this situation. Instead of one server with all the interruptions
caused by multiple priorities, simply have a separate server for each priority or at least for those
with the highest α

σ ratio. For example, consider a two priority system with α1

σ1
= α2

σ2
= 1

2 . Then the

priority system is not stable since 1 − α1

σ1
− α2

σ2
= 0. However, separating the two priority clients

and treating them with separate facilities would yield two M/M/1/FIFO queues each of which has
α
σ = 1

2 < 1. So, both are stable and will have reasonable waiting times. The cost is the addition
of a server. However, the server for priority two patients would likely be less expensive than the
server for priority one patients.

In real life many factors must be taken into account. However, the mathematical models consid-
ered in the last three sections give insights that are not likely to be seen otherwise. If it is necessary
to take other factors into account, more sophisticated models can be constructed and simulations
performed to see the effect of those factors.

In the next section we will develop a method for determining the steady-state probabilities for
priority queues.

17. Simulation of Priority Queues with Preemption

Here we discuss a realistic model of Emergency Care developed by our research group. It is a
simulation program written in R. The program was produced by Joshua Hurwitz on collaboration
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with Jo Ann Lee. It was a project in a class taught by Professor Scott McKinley who was also
involved in the project. The program simulates the number of patients in each of the five ESI levels
of priority through a period of several days. For the parameters that fit the arrival rates and staffing
at the Shands ED, we get a good fit. The simulation model linked below allows one to adjust the
parameters and observe the results of the simulation.

The program assumes that each priority class preempts those of lower priority classes. The
preemption includes interruption of treatment of a lower priority patient so that treatment times
are longer than would be anticipated. Experimenting with the program shows how easily congestion
arises. Examination of the graphs produced by the program shows that one should be able to
anticipate the congestion and perhaps take measures to bring on additional personnel to avoid the
extreme waiting times. We hope that these simulations will allow hospital management to recognize
criteria that indicate when congestion is likely to occur. If we can recognize when congestion is
likely to occur, then staffing could be arranged to prevent it.

The paper describing the simulation program was published as, ”A comprehensive simulation
platform to quantify and manage site-specific emergency department crowding” Biomed Central
Medical Informatics and Decision Making, http://www.biomedcentral.com/1472-6947/14/50

(online publication: Joshua Hurwitz, Jo Ann Lee, Kenneth Lopiano, Scott McKinley, James
Keesling, Joseph Tyndall). There is a software website demonstrating the simulation platform
http://spark.rstudio.com/klopiano/EDsimulation/.
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