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The purpose of this document is to give a brief summary of the Riemann integral. We
start with the definition.

1. Riemann integral and its existence

Definition. Suppose that f : [a, b] → R is a bounded function. The Riemann integral

of f(x) is denoted by
∫ b
a f(x)dx. Let P = {x0 = a < x1 < x2 < · · · < xn = b} be a

partition of [a, b]. For each i, let Mi = supx∈[xi−1,xi] f(x) and mi = infx∈[xi−1,xi] f(x). Let

SP =

n∑
i=1

Mi∆xi

and

SP =
n∑

i=1

mi∆xi.

Let ∫ b

a

f(x)dx = sup
P

SP =
n∑

i=1

mi∆xi

and ∫ b

a
f(x)dx = inf

P
SP =

n∑
i=1

Mi∆xi.

Note that
∫ b

a
f(x)dx ≤

∫ b

af(x)dx. We say that f(x) is Riemann integrable over [a, b]

when
∫ b

a
f(x)dx =

∫ b

af(x)dx and denote the common value by
∫ b
a f(x)dx.

Theorem 1. Suppose that f(x) is non-decreasing on [a, b]. Then f(x) is Riemann inte-
grable over [a, b].

Proof. Let n be a positive integer and let

Pn =

{
x0 = a, x1 = a+

(b− a)

n
, x2 = a+

2 · (b− a)

n
, . . . , xn = b

}
.

Note that Mi = f(xi) and mi = f(xi−1). So,
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SP =
n∑

i=1

f(xi−1)∆xi

and

SP =
n∑

i=1

f(xi)∆xi.

One can easily see that as n→∞,

SP − SP =
(f(b)− f(a)) · (b− a)

n
→ 0.

�

Theorem 2. Suppose that f(x) is continuous on [a, b]. Then f(x) is Riemann integrable
over [a, b].

Proof. Let ε > 0. Since f(x) is continuous on [a, b] and [a, b] is compact, f(x) must be
uniformly continuous. Let δ > 0 be such that whenever |x− y| < δ, |f(x)− f(y)| < ε. Let
n be a positive integer such that b−a

n < δ. Then let

Pn =

{
x0 = a, x1 = a+

(b− a)

n
, x2 = a+

2 · (b− a)

n
, . . . , xn = b

}
.

Then

SP =
n∑

i=1

Mi∆xi =
n∑

i=1

Mi ·
(b− a)

n

and

SP =

n∑
i=1

mi∆xi =

n∑
i=1

mi ·
(b− a)

n
.

Thus,

SP − SP =

n∑
i=1

(Mi −mi) ·
(b− a)

n
< n · ε · (b− a)

n
= ε · (b− a).

Thus, we can conclude that

∫ b

a
f(x)dx = inf

P
SP = sup

P
SP =

∫ b

a

f(x)dx.

�
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Through the proof it is easy to see that we could use the upper sum or the lower sum
in either of the above theorems and the analysis in the proofs to estimate how close these
sums are to the true integral. This would be a rather crude numerical estimate. We can
estimate the value of the integral much more accurately using Romberg integration. We
describe this method in a separate posting.

2. The Fundamental Theorem of Calculus

Theorem 3 (The Fundamental Theorem of Calculus). Suppose that f(x) is continuous
on [a, b]. Suppose that F (x) is differentiable on [a, b] with F ′(x) ≡ f(x) on [a, b]. Then∫ b
a f(x)dx = F (b)− F (a).

Proof. Define F (x) =
∫ x
a f(t)dt. Then F (x) is defined for all x ∈ [a, b]. We now show that

F ′(x) ≡ f(x).

F ′(x) = lim
h→0

F (x+ h)− F (x)

h
= lim

h→0

∫ x+h
x f(t)dt

h

We want to show that the limit above is equal to f(x) for each x. Let ε > 0 be given.
By the continuity of f(x) at x, let δ > 0 be such that if |y−x| < δ, then |f(y)− f(x)| < ε.
Then if |h| < δ, then

h · (f(x)− ε)
h

= f(x)− ε <
∫ x+h
x f(t)dt

h
<
h · (f(x) + ε)

h
= f(x) + ε.

Thus,

F ′(x) = lim
h→0

F (x+ h)− F (x)

h
= lim

h→0

∫ x+h
x f(t)dt

h
= f(x)

as required.
To complete the proof of the Fundamental Theorem of Calculus, let G(x) be any differ-

entiable function on [a, b] such that G′(x) ≡ f(x). Then let h(x) = G(x) − F (x). Then
h′(x) ≡ 0 by the Mean Value Theorem. Thus, there is a constant C such that h(x) ≡ C.
Thus G(x) ≡ F (x) + C. Thus,∫ b

a
f(x)dx = F (b)− F (a) = G(b)−G(a).

�

Note that if the Riemann integral exists for f(x) over [a, b], then F (x) =
∫ x
a f(t)dt

exists for all a ≤ x ≤ b. No assumption about the continuity of f(x) is necessary for this
existence. However, F ′(x) may not exist at a point x. Nevertheless, if f is continuous at
x, then F ′ exists at x and F ′(x) = f(x) at this x.


