
Markov Graphs and Sharkovsky’s Theorem

 Let f : I → I  be a continuous mapping with I an interval in the real line.  
Consider the following ordering of the positive integers.


 

3 5  7  2 ⋅ 3 2 ⋅5  2 ⋅ 7  2n ⋅ 3 2n ⋅5  2n ⋅ 7 
            2n+1 ⋅ 3 2n+1 ⋅5  2n

 2n−1
 8  4  2 1

 This ordering is known as the Sharkovsky ordering.  In this ordering if the map f 
has a periodic orbit of period k and  k  m , then f also has a periodic orbit of period m.  
This is known as Sharkovsky’s Theorem.

 One basis for proving this theorem is by means of Markov graphs.  Suppose that 
f : I → I  is as above and that I j{ } j=1

p
 is a collection of subintervals of I which are 

pairwise disjoint except possibly for their endpoints.  The Markov graph for this 
collection of intervals is a directed graph with the vertices being the collection of 
intervals I j{ } j=1

p
 and with an arrow Ii → I j  precisely when f (Ii ) ⊃ I j .  

Theorem.  Suppose that 
 
I1 → I2 →→ Ik{ }  is a cycle in this Markov graph, that is, 

I1 = Ik .  Then there is a point x ∈I1  such that f k (x) = x  and f i (x)∈Ii .

 Obviously, such a point is periodic with period n or less and the period must be an 
integral factor of n.  If the cycle is not a multiple of a smaller cycle and if the endpoints 
of the intervals do not have a period which is a factor of n, then x must have period n.  
The following two lemmas are essential in proving the Markov graph theorem.

Lemma 1.  Suppose that f : I → R  is continuous and that f (I ) ⊃ I .  Then there is an 
x ∈I  such that f (x) = x .

Lemma 2.  Suppose that f : I → R  is continuous and that f (I ) ⊃ J  with J an interval.  
Then there is an interval K ⊂ I  such that f (K ) = J  and such that no proper subinterval 
of K maps onto J.

 We will now use the Markov graph theorem to prove that period three implies all 
other periods.  This is a special case of Sharkovsky’s Theorem and illustrates the methods 
of proof for the most general case.



Theorem.  Suppose that f : I → I  is continuous and that f has a periodic point of period 
three.  Then for every n there is a periodic point with period n.
Proof.  Let x1 < x2 < x3  be the period three orbit that f is assumed to have.  Assume also 
that f (x1) = x2 , f (x2 ) = x3 , and f (x3) = x1 .  Let I1 = [x1, x2 ]  and I2 = [x2 , x3] .  Then the 
Markov graph for these two intervals and a diagram is given below.

 
 
I1 →← I2 |

 Now let n be any positive integer not one or three.  Consider the cycle 

 
I1 → I2 →→ I2 → I1{ }  of length n where only the first and last intervals are I1 .  Let 

x ∈I1  be the point given by the Markov graph theorem for this cycle.  Then f n (x) = x  

and f i (x)∈I2  for all 1 ≤ i < n .  Now if f i (x) = x  for some i < n , then x ∈I1∩ I2  and 
thus x = x2  has period three and cannot possibly follow the itinerary of the cycle we 

assumed.  Thus, it cannot happen that f i (x) = x  for some i < n  and thus x has period n.

 We assumed that f (x1) = x2 , f (x2 ) = x3 , and f (x3) = x1 .  The alternative is that 
f (x1) = x3 , f (x3) = x2 , and f (x2 ) = x1 .  A similar argument can be made for this case as 

well to show that period three implies period n for all n.   

Example.  Let f : I → I  be the function defined by the following formula.

  f (x) =
2x 0 ≤ x ≤ 1

2

2 − 2x 1
2 ≤ x ≤ 1

⎧
⎨
⎪

⎩⎪

 It is a helpful exercise to use Markov graphs to determine the number of periodic 
orbits of various periods n.  To analyze this problem let I1 = 0, 12⎡⎣ ⎤⎦  and let I2 = 1

2 ,1⎡⎣ ⎤⎦ .  

The Markov graph for these subintervals is the following.

 
 
\ I1 →← I2 |

x1 x2 x3I1 I2



 Determine the cycles in this Markov graph that give period n orbits.  Also, show 
that this cycle determines the period n orbit uniquely.  Use these results to count the 
period n orbits.  Lastly, come up with an numerical algorithm to find the period n orbit 
given the cycle in the Markov graph associated with it.

 One last comment should be made concerning the existence of the periodic orbits 
implied by Sharkovsky’s Theorem.  In the bifurcation diagram produced for the quadratic 
family of functions fµ = µx(1− x)  for certain values of µ  there are attracting periodic 

orbits.  In particular, there is an attracting periodic orbit of period three.  Of course, by 
Sharkovsky’s Theorem for these same values of µ  there are periodic orbits of all periods.  
Where are these other periodic orbits?  The bifurcation diagram only shows the one 
period three orbit.  It turns out, in this case, that there is only one attracting periodic orbit 
which in this range is the period three orbit.  The basin of attraction of this orbit is dense 
in the interval and the complement of the basin of attraction contains a Cantor which 
contains all of the other periodic points except one of the fixed points.  Determining the 
precise location of these other periodic orbits and determining the cardinality of the 
number of these orbits for each period n is a matter of another discussion, but it has been 
done.


