MAA 4212 - QUIZ 2 - JAMES KEESLING

Problem 1. State Cavalieri's Principle. Determine the volume of a sphere of radius R using this principle.

Problem 2. Use Pappus' Theorem to determine the surface area of a torus. Assume that the torus is formed by rotating a circle around the z-axis where the circle has radius b and the center of the circle is distance a from the z-axis with $a>b$.

Problem 3. Determine a formula for $\sum_{i=1}^{n} i^{5}$. Use this to determine the area under the curve of x^{5} over $[0,1]$.

Problem 4. State the Fundamental Theorem of Calculus.

Problem 5. State the definition of uniform convergence for a sequence of functions. Suppose that $f_{n}(x)$ is Riemann integrable for all n and that $f(x)$ is Riemann integrable. Show that if $f_{n}(x)$ converges to $f(x)$ uniformly on $[a, b]$, then $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x)=\int_{a}^{b} f(x) d x$

Problem 6. State Pappus' Theorem. Prove Pappus' Theorem.
Problem 7. Show that for all $|x|<1 \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot x^{n}}{n}$.
Problem 8. Define the Dirichlet Function and show that it is not Riemann integrable over $[0,1]$.

Problem 9. Let $f(x)$ be a bounded function over the interval $[a, b]$. Define when $f(x)$ is Riemann integrable. Show that if $f(x)$ is monotone increasing over the interval $[a, b]$, then $f(x)$ is Riemann integrable over $[a, b]$.

Problem 10. Estimate the integral of $f(x)=\exp \left(x^{2}\right)$ over the interval $[0,1]$ using Romberg Integration. Use 2^{5} intervals and determine the accuracy of your estimate.

