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Stability of a Floating Cone 
with Vertex Down 
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 Assume that the cone is right and has height h and that the base is a circle of 
radius r.  Let the angle of the vertex be denoted by !  so that tan !

2( ) =
r

h
.  Assume that 

the density of the cone is d with 0 < d < 1 with the density of water being 1.  Then for the 
cone to be at equilibrium in the above position, the depth of the vertex will be at 
D = d

3
h .  Now consider the cone slightly tipped at an angle !  from vertical. 
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 Assume that the coordinates are at the vertex of the cone with the y-axis vertical 
and the x-axis horizontal.  The center of gravity of the cone so tipped will have the 
following x-coordinate. 
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3

4
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 The center of gravity of the displaced water will have the following x-coordinate. 
 
  x

1
(! ) =

3

8
D(! ) tan

"
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 This last result was obtained by noting that the displaced water will form a cone 
with base an ellipse.  The length of the major axis of the ellipse will be 
L = D(!) tan

"
2 # !( ) + tan "

2 + !( )[ ] .  The centroid of this ellipse will be at the midpoint of 
the major axis and the centroid of the displaced water will be on the line joining this point 
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to the vertex of the cone and 34  of the distance from the vertex to the centroid of the 
elliptical face. 
 
 To determine stability we compute the following limit. 
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 The vertical position is stable if this limit is greater than one and unstable if this 
limit is less than one.  This limit is computed below. 
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 This limit is easily seen to be 
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 Since D(0) = d

3
h  and the right hand limit is 2sec2 !

2( ) , we have stability 
precisely when 
 
  cos

6 !
2( ) > d . 

 
 A similar argument establishes the stability for a long right cylinder with with 
isosceles triangular base whose density is d.  The angle !  of the vertex of the isosceles 
triangular cross-section must be 
 
  cos

4 !
2( ) > d . 


