THE TAYLOR REMAINDER THEOREM

JAMES KEESLING

In this post we give a proof of the Taylor Remainder Theorem. It is a very simple proof
and only assumes Rolle’s Theorem.

Rolle’s Theorem. Let f(z) be differentiable on [a, b] and suppose that f(a) = f(b). Then
there is a point a < £ < b such that f'(£) = 0.

Taylor Remainder Theorem. Suppose that f(x) is (N + 1) times differentiable on the
interval [a, b] with a < 29 < b. Let a < zg < b. Then there is a point { between xp and
such that the following holds.
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Proof. Let f,a,b,x and x¢ be as in the statement of the theorem. Let R be defined by
the following equation.
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Define F'(§) by the following formula.
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Then we have the following.
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Clearly F(zg) = F(x) = f(x). So, by Rolle’s Theorem, there is a point £ between zp and
x such that F’(€) = 0. At that point £ we have R = fN+1(¢) and thus we have
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This is what was to be proved. ]



