THE TAYLOR REMAINDER THEOREM

JAMES KEESLING

In this post we give a proof of the Taylor Remainder Theorem. It is a very simple proof and only assumes Rolle's Theorem.

Rolle's Theorem. Let $f(x)$ be differentiable on $[a, b]$ and suppose that $f(a)=f(b)$. Then there is a point $a<\xi<b$ such that $f^{\prime}(\xi)=0$.

Taylor Remainder Theorem. Suppose that $f(x)$ is $(N+1)$ times differentiable on the interval $[a, b]$ with $a<x_{0}<b$. Let $a<x_{0}<b$. Then there is a point ξ between x_{0} and x such that the following holds.

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}}{2}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(N)}\left(x_{0}\right)}{N!}\left(x-x_{0}\right)^{N}+\frac{f^{(N+1)}(\xi)}{(N+1)!}\left(x-x_{0}\right)^{N+1} \\
& =\sum_{n=0}^{N} \frac{f^{(n)}}{n!}\left(x-x_{0}\right)^{n}+\frac{f^{(N+1)}(\xi)}{(N+1)!}\left(x-x_{0}\right)^{N+1}
\end{aligned}
$$

Proof. Let f, a, b, x and x_{0} be as in the statement of the theorem. Let R be defined by the following equation.
$f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}}{2}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(N)}\left(x_{0}\right)}{N!}\left(x-x_{0}\right)^{N}+\frac{R}{(N+1)!}\left(x-x_{0}\right)^{N+1}$
Define $F(\xi)$ by the following formula.

$$
F(\xi)=\sum_{n=0}^{N} \frac{f^{(n)}(\xi)}{n!}(x-\xi)^{n}+\frac{R}{(N+1)!}(x-\xi)^{N+1}
$$

Then we have the following.

$$
\begin{aligned}
F^{\prime}(\xi) & =f^{\prime}(\xi)+\sum_{n=0}^{N}\left(\frac{f^{(n+1)}(\xi)}{n!}(x-\xi)^{n}-\frac{f^{(n)}(\xi)}{(n-1)!}(x-\xi)^{n-1}\right)-\frac{R}{N!}(x-\xi)^{N} \\
& =\frac{f^{(N+1)}(\xi)}{N!}(x-\xi)^{N}-\frac{R}{N!}(x-\xi)^{N} \\
& =\frac{(x-\xi)^{N}}{N!}\left(f^{(N+1)}(\xi)-R\right)
\end{aligned}
$$

Clearly $F\left(x_{0}\right)=F(x)=f(x)$. So, by Rolle's Theorem, there is a point ξ between x_{0} and x such that $F^{\prime}(\xi)=0$. At that point ξ we have $R=f^{(N+1)}(\xi)$ and thus we have

$$
f(x)=\sum_{n=0}^{N} \frac{f^{(n)}}{n!}\left(x-x_{0}\right)^{n}+\frac{f^{(N+1)}(\xi)}{(N+1)!}\left(x-x_{0}\right)^{N+1} .
$$

This is what was to be proved.

