THE TAYLOR REMAINDER THEOREM

JAMES KEESLING

In this post we give a proof of the Taylor Remainder Theorem. It is a very simple proof and only assumes Rolle's Theorem.

Rolle's Theorem. Let f(x) be differentiable on [a, b] and suppose that f(a) = f(b). Then there is a point $a < \xi < b$ such that $f'(\xi) = 0$.

Taylor Remainder Theorem. Suppose that f(x) is (N + 1) times differentiable on the interval [a, b] with $a < x_0 < b$. Let $a < x_0 < b$. Then there is a point ξ between x_0 and x such that the following holds.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''}{2}(x - x_0)^2 + \dots + \frac{f^{(N)}(x_0)}{N!}(x - x_0)^N + \frac{f^{(N+1)}(\xi)}{(N+1)!}(x - x_0)^{N+1}$$
$$= \sum_{n=0}^N \frac{f^{(n)}}{n!}(x - x_0)^n + \frac{f^{(N+1)}(\xi)}{(N+1)!}(x - x_0)^{N+1}$$

Proof. Let f, a, b, x and x_0 be as in the statement of the theorem. Let R be defined by the following equation.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''}{2}(x - x_0)^2 + \dots + \frac{f^{(N)}(x_0)}{N!}(x - x_0)^N + \frac{R}{(N+1)!}(x - x_0)^{N+1}$$

Define $F(\xi)$ by the following formula.

$$F(\xi) = \sum_{n=0}^{N} \frac{f^{(n)}(\xi)}{n!} (x-\xi)^n + \frac{R}{(N+1)!} (x-\xi)^{N+1}$$

Then we have the following.

$$F'(\xi) = f'(\xi) + \sum_{n=0}^{N} \left(\frac{f^{(n+1)}(\xi)}{n!} (x-\xi)^n - \frac{f^{(n)}(\xi)}{(n-1)!} (x-\xi)^{n-1} \right) - \frac{R}{N!} (x-\xi)^N$$
$$= \frac{f^{(N+1)}(\xi)}{N!} (x-\xi)^N - \frac{R}{N!} (x-\xi)^N$$
$$= \frac{(x-\xi)^N}{N!} (f^{(N+1)}(\xi) - R)$$

JAMES KEESLING

Clearly $F(x_0) = F(x) = f(x)$. So, by Rolle's Theorem, there is a point ξ between x_0 and x such that $F'(\xi) = 0$. At that point ξ we have $R = f^{(N+1)}(\xi)$ and thus we have

$$f(x) = \sum_{n=0}^{N} \frac{f^{(n)}}{n!} (x - x_0)^n + \frac{f^{(N+1)}(\xi)}{(N+1)!} (x - x_0)^{N+1}.$$

This is what was to be proved.