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In this post we give a proof of the Taylor Remainder Theorem. It is a very simple proof
and only assumes Rolle’s Theorem.

Rolle’s Theorem. Let f(x) be differentiable on [a, b] and suppose that f(a) = f(b). Then
there is a point a < ξ < b such that f ′(ξ) = 0.

Taylor Remainder Theorem. Suppose that f(x) is (N + 1) times differentiable on the
interval [a, b] with a < x0 < b. Let a < x0 < b. Then there is a point ξ between x0 and x
such that the following holds.
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Proof. Let f, a, b, x and x0 be as in the statement of the theorem. Let R be defined by
the following equation.
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Define F (ξ) by the following formula.
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Then we have the following.
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Clearly F (x0) = F (x) = f(x). So, by Rolle’s Theorem, there is a point ξ between x0 and

x such that F ′(ξ) = 0. At that point ξ we have R = f (N+1)(ξ) and thus we have

f(x) =
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This is what was to be proved. �


