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Simple Varieties of Trees

A graph G = (V ,E ) consists of a set of vertices V and a set of edges E .

Definition

A rooted tree is a connected graph without cycles with one vertex
distinguished as the root. A class of trees is called simple variety if the
generating function for the number of trees on n vertices satisfies an
equation of the form

T (x) = xφ(T (x)).
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Motivation

Things modelled by rooted trees:

Computer network access

Social networks

Distribution networks

Rooted trees are also used as data structures.
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A Few Simple Varieties of Trees

T (x) = xφ(T (x)).

General trees: unlabeled, plane, any number of children.

T (x) = x
1

1− T (x)
.

Motzkin trees: unlabeled, plane, 0, 1, or 2 children.
T (x) = x(1 + T (x) + T (x)2)

Binary trees: unlabeled, plane, children are designated left or right,
0, 1, or 2 children. T (x) = x(1 + 2T (x) + T (x)2).

Cayley trees: labeled, nonplane, any number of children.
T (x) = xeT (x).
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Some Traits of Trees/Vertices

The height of a tree is the distance from the root to the furthest
vertex plus one.

The rank/protection number of a vertex is the shortest distance
from that vertex to its closest descendant leaf.

A tree or vertex is balanced if its height is one greater than its rank.
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Previous Results

Theorem (Flajolet and Odlyzko, 1981)

The expected height of any simple variety of tree is asymptotically k
√
πn

for some k > 0.

Theorem (Flajolet and Sedgewick, 2009)

The sum of the lengths of paths where the root is one endpoint is of
order n3/2.
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Previous Results

Theorem (C, 2016)

The expected rank of the root of a uniformly chosen general tree
approaches

∞∑
k=1

9

41−k + 4 + 4k
≈ 1.62297.

The expected rank of a uniformly chosen vertex in a uniformly chosen
general tree approaches

∞∑
k=1

3

4k + 2
≈ 0.727649.
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Counting Leaves

Proposition

Let T (x) be the generating function for the number of trees on n vertices
in some simple variety of trees, and let L(x) be the generating function
for the number of trees with a marked leaf in the same family. Then

L(x) =
x2T ′(x)

T (x)
.

It suffices to show that there is a bijection between trees with a marked
vertex and pairs of trees and trees with a marked leaf with one vertex
removed. This would show that

xT ′(x) = V (x) =
T (x)L(x)

x
.
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Counting Leaves

Proof.

×
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Counting Paths

Paths from the root: V (x)− T (x)

Paths from the root to a leaf: L(x)− x

Any vertical path: L(x)
x (V (x)− T (x))

Vertical paths that end in a leaf: L(x)
x (L(x)− x)

Edges in paths from the root: L(x)
x (V (x)− T (x))
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Higher Moments

Consider the generating function

(
L(x)

x

)k

(V (x)− T (x)).
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Higher Moments

Proposition

The generating function

(
L(x)

x

)k

(V (x)− T (x)) counts the number of

paths in all trees of some variety on n vertices, with each path weighted
by the number of k element multi-sets of the edges.

Proposition

The generating function for the number of paths from the root in all
trees of some variety on n vertices, with each path weighted by the length
of the path to the kth power is a polynomial of degree k of the form(

k!

(
L(x)

x

)k

− k!(k − 1)

2

(
L(x)

x

)k−1
+ Qk

(
L(x)

x

))
(V (x)− T (x)),

where Qk(x) is a polynomial in L(x)
x of degree k − 2 or less.
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Higher Moments

Proof.

Let the length of a given path be `. Then in the generating function(
L(x)

x

)k

(V (x)− T (x)) has weight(
`+k−1

k

)
= 1

k!

(
`k − k(k−1)

2 `k−1 + ...
)
, this gives the leading coefficient.

Proceeding by induction, we can remove the lower order terms by
subtracting lower order polynomials.
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Asymptotics

In any simple variety of tree,

T (x) = a0 − a1

√
1− x

ρ
+ a2

(
1− x

ρ

)
+ O

((
1− x

ρ

)3/2
)
,

with a0, a1 > 0.

V (x) =
a1

2
√

1− x
ρ

− a2 + O

(√
1− x

ρ

)
,

L(x)

x
=

a1

2a0
√

1− x
ρ

+

(
a21 − 2a0a2

)
2a20

+ O

(√
1− x

ρ

)
.
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Asymptotics

Let X (n) be the r.v. whose value is the length of a uniformly randomly
selected path from the root of a tree on n vertices to any vertex. Then
we can compute

E[X (n)k ] = nk/2

((
a1
a0

)k

Γ

(
k

2
+ 1

)
−

ak−11

(
(k + 1)a20 + 2a2(k + 1)a0 − a21k

)
k(k − 1)Γ

(
k−1
2

)
4ak+1

0

√
n

)
+ O

(
nk/2−1

)
,

as well as corresponding expectations for three other variations of vertical
paths.
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Asymptotics

In the family of Cayley trees a0 = 1, a1 =
√

2, a2 = 2
3 . The expected

length of a path from

the root to any vertex:

√
πn

2
− 4

3
.

the root to any leaf:

√
πn

2
− 1

3
.

any vertex to any of its descendants:

√
2n

π
+

8

3π
− 1.

any vertex to any of its descendant leaves:

√
2n

π
+

2

3π
.

These trends are universal, if done with general terms, fixing a type of

top point, leaves are a constant further away (
a21
2a20

with roots,
a21(π−2)
2a20(π)

with vertices) plus an error term, fixing a type of bottom point, roots are
further by a factor of π

2 plus an error term (which depends on the type of
tree).
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Related Problems

Expected length of paths from the root to a leaf in various families

Bijective proofs of correspondence between all paths and vertical
paths
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