For full credit, you must show all work and circle your final answer.

1 Solve:
$\sqrt{x-3}+\sqrt{x}=3$
The easiest way to solve this is isolate the most complicated radical term on one side of the equation:
$\sqrt{x-3}=3-\sqrt{x}$
$(\sqrt{x-3})^{2}=(3-\sqrt{x})^{2}$
$x-3=9-6 \sqrt{x}+x$
$-12=-6 \sqrt{x}$
$2=\sqrt{x}$
$x=4$
2 Solve for x :
$3-|x+1|=-1$
The easiest way to solve this is to isolate the absolute value term on one side of the equation, and solve for both positive and negative cases:
$3-|x+1|=-1$
$|x+1|=4$
Here we have two cases: that $(x+1)$ is positive and that $(x+1)$ is negative :
Case 1: $(x+1)$ is positive
$x+1=4$
$x=3$
Case 2: $(x+1)$ is negative
$-(x+1)=4$ or you can write $x+1=(-4)$
$x=-5$

3 Solve the inequality:
$-3 \leq \frac{1}{3}(3-x)<2$
You have to remember that any operation you do on one part of the inequality, must be done on the others:
$3 *-3 \leq 3 * \frac{1}{3}(3-x)<3 * 2$
$-9 \leq(3-x)<6$
$(-3)+(-9) \leq-3+(3-x)<-3+6$
$-12 \leq-x<3$
$12 \geq x>3$
Remember to switch the signs when you multipy/divide by a negative.

