For full credit, you must show all work and circle your final answer.

1 Compute $f \circ g$:
$f(x)=x^{2}+3 x-1$ and $g(x)=x+3$
$(f \circ g)(x)$
$=f(g(x))$
$=f(x+3)$
$=(x+3)^{2}+3(x+3)-1$
$=\left(x^{2}+6 x+9\right)+(3 x+9)-1$
$=x^{2}+9 x+17$

2 Find the inverse of $f(x)$, assume $x>-4$:
$f(x)=x^{2}-4$
First switch x and y, and then solve for y :
$y=x^{2}-4$
$\rightarrow x=y^{2}-4$
$\rightarrow y^{2}=x+4$
$\rightarrow y=\sqrt{x+4}$
So the inverse is: $f^{-} 1(x)=\sqrt{x+4}$
You can check: $\left(f \circ f^{-} 1\right)(x)=f\left(f^{-} 1(x)\right)=f(\sqrt{x+4})=(\sqrt{x+4})^{2}-4=x+4-4=x$

3 Sketch the graph for $\mathrm{f}(\mathrm{x})$ and determine if it is odd, even or neither:
$f(x)=x^{2}-9$

$f(-x)=(-x)^{2}-9=x^{2}-9=f(x)$, so the function is even. In the graph you can see that the function is reflected across the y axis, which also means it is even.

