For full credit, you must show all work and circle your final answer.

1 Use Polynomial division to find $\frac{f(x)}{g((x)}$. Is $g(x)$ a factor of $f(x)$?
$f(x)=x^{3}+3 x^{2}-x-3$ and $g(x)=x+1$

$$
x+1) \begin{array}{r}
\frac{x^{2}+2 x-3}{x^{3}+3 x^{2}-x-3} \\
-x^{3}-x^{2} \\
\hline 2 x^{2}-x \\
-2 x^{2}-2 x \\
\frac{-3 x-3}{0}
\end{array}
$$

As there is no remainder, $g(x)$ is a factor of $f(x)$. In fact this tells us $f(x)=g(x)\left(x^{2}+2 x-3\right)$. You can also find this by using Synthetic Division:

-1| 1 | 3 | -1 | -3 |
| ---: | ---: | ---: | ---: |
| | -1 | -2 | 3 |
| 1 | 2 | -3 | 0 |

2 For the complex numbers x, y compute $x+y, x-y, x * y$: $x=2+i$ and $y=3+4 i$
$x+y=(2+i)+(3+4 i)=(2+3)+(1+4) i=5+5 i$
$x-y=(2+i)-(3+4 i)=(2-3)+(1-4) i=-1-3 i$
$x * y=(2+i)(3+4 i)=6+8 i+3 i+4\left(i^{2}\right)=2+11 i$

3 Find the vertical asymtope of $f(x)$, and sketch the graph. (Don't forget about the y -intercept!)
$f(x)=\frac{1}{x+3}$

The picture here is not completely accurate, there is an asymtope at $x=-3$, but this is as close as I could get it in LaTex.
There is a vertical asymtope at $x=-3$, since $f(-3)=\frac{1}{-3+3}=\frac{1}{0}$, which is undefined.
Also, $f(0)=\frac{1}{0+3}=\frac{1}{3}$ so the y intercept is $\frac{1}{3}$

