2

3

Name:

For full credit, you must show all work and circle your final answer.

1 Solve the inequality and graph the solution set. $x^{2} - 2x < 8$ $x^{2} - 2x < 8 < 0$ (x + 2)(x - 4) < 0This gives us two critical points: x = -2 and x = 4We have to test the intervals: $(-\infty, -2), (-2, 4), \text{ and}(4, \infty)$: If $x = -3 \rightarrow (x + 2)(x - 4) = (-3 + 2)(-3 - 4) = (-1)(-7) = 7 > 0$ which does not fit our inequality. If $x = 0 \rightarrow (x + 2)(x - 4) = (2)(-4) = -8 < 0$ which does fit our inequality. If $x = 5 \rightarrow (x + 2)(x - 4) = (5 + 2)(5 - 4) = (7)(1) = 7 > 0$ which does not fit our inequality.

Only one interval fulfills the inequality, so we have solutions $x \in (-2, 4)$

Solve the system of equations and list the solution points: $x^2 + 2x + y = 0$ and y - x - 2 = 0

Using the second equation we find y = x + 2We can plug this into the first equation we get: $x^2 + 2x + (x + 2) = 0$ $x^2 + 3x + 2 = 0$ (x + 2)(x + 1) = 0Isolating each of the brackets, we find we have two cases, if x = -2 and if x = -1: If x = -2, then y = x + 2 = (-2) + 2 = 0, so (-2, 0) is a solution point. If x = -1 then y = x + 2 = (-1) + 2 = 1 so (-1, 1) is a solution point.

Calculate f(x) for x = -2, -1, 0, 1, 2 and draw a rough sketch of the graph: $f(x) = 5^x$

 $\begin{array}{l} f(-2)=5^{-2}=\frac{1}{5^2}=\frac{1}{25}\\ f(-1)=5^{-1}=\frac{1}{5}\\ f(0)=5^0=1\\ f(1)=5^1=5\\ f(2)=5^2=25\\ \text{The graph is excluded but the points are: } (-2,\frac{1}{25}), (-1,\frac{1}{5}), (0,1), (1,5), (2,25) \end{array}$