For full credit, you must show all work and circle your final answer.

1 Solve the inequality and graph the solution set.
$x^{2}-2 x<8$
$x^{2}-2 x-8<0$
$(x+2)(x-4)<0$
This gives us two critical points: $x=-2$ and $x=4$
We have to test the intervals: $(-\infty,-2),(-2,4)$, and $(4, \infty)$:
If $x=-3 \rightarrow(x+2)(x-4)=(-3+2)(-3-4)=(-1)(-7)=7>0$ which does not fit our inequality.
If $x=0 \rightarrow(x+2)(x-4)=(2)(-4)=-8<0$ which does fit our inequality.
If $x=5 \rightarrow(x+2)(x-4)=(5+2)(5-4)=(7)(1)=7>0$ which does not fit our inequality.
Only one interval fulfills the inequality, so we have solutions $x \in(-2,4)$

2 Solve the system of equations and list the solution points:
$x^{2}+2 x+y=0$ and $y-x-2=0$
Using the second equation we find $y=x+2$
We can plug this into the first equation we get:
$x^{2}+2 x+(x+2)=0$
$x^{2}+3 x+2=0$
$(x+2)(x+1)=0$
Isolating each of the brackets, we find we have two cases, if $x=-2$ and if $x=-1$:
If $x=-2$, then $y=x+2=(-2)+2=0$, so $(-2,0)$ is a solution point.
If $x=-1$ then $y=x+2=(-1)+2=1$ so $(-1,1)$ is a solution point.

Calculate $f(x)$ for $x=-2,-1,0,1,2$ and draw a rough sketch of the graph:
$f(x)=5^{x}$
$f(-2)=5^{-2}=\frac{1}{5^{2}}=\frac{1}{25}$
$f(-1)=5^{-1}=\frac{1}{5}$
$f(0)=5^{0}=1$
$f(1)=5^{1}=5$
$f(2)=5^{2}=25$
The graph is excluded but the points are: $\left(-2, \frac{1}{25}\right),\left(-1, \frac{1}{5}\right),(0,1),(1,5),(2,25)$

