Covering Spaces

Definition: A map \(p : E \to X \) is a **Covering Map** if each \(x \in X \) has an open neighborhood \(U \) such that \(p^{-1}(U) \) is a disjoint union \(\sqcup_k U_k \) with

1. Each \(U_k \) open in \(E \), and
2. \(p |_{U_k} : U_k \to U \) is a Homeomorphism for each \(k \).

Such an open set \(U \) is called an **Event Cover** and the \(U_k \) are called **Sheets**.

Examples

1. \(\text{id} : X \to X \) is a covering for any \(X \) (obviously).
2. \(E = \mathbb{R}, \quad X = S^1, \quad p(x) = e^{2\pi i x} \)
3. \(E = S^1, \quad X = S^1, \quad p(z) = z^n \)

Note: Any connected open \(U \subseteq S^1 \) is an Event Cover.

Examples

1. \(E = S^n, \quad X = \mathbb{R}P^n, \quad p : S^n \to \mathbb{R}P^n \) the **Quotient Map**. This is a Cover with \(2^n \) Sheets (by Definition, Really).
2. \(\mathbb{R}^2 \to S^1 \times S^1 = (x, y) \to (e^{2\pi i x}, e^{2\pi i y}) \)
3. \(p : \mathbb{C} \to \mathbb{C} : z \to e^{2\pi i z} \) This is a Covering: Use Polar Coordinates \(w = p + i \theta, \quad \theta \in \mathbb{R} \) \(z \to e^{2\pi i \theta} \)
4. \(E = S^1, \quad X = \mathbb{C}^\times \to \mathbb{C}, \quad \phi(\theta) = \mathbb{C}^\times \)

Note: For a Covering Map \(p \), the Fibers Are Discrete.

Unique Lifting Theorem

Suppose \(\pi : (E, \mathcal{U}) \to (X, \mathcal{V}) \) is a covering map and \(\phi : (Y, \mathcal{W}) \to (X, \mathcal{V}) \) is continuous. If \(Y \) Is Connected, Then There Is At Most One Lift \(\phi : (Y, \mathcal{W}) \to (E, \mathcal{U}) \) \(\phi \quad \phi(\pi(\phi)) = \phi \)

Proof: Suppose \(\phi_1, \phi_2 \) are lifts of \(\phi \). And Set \(A = \{ x \in Y \mid \phi_1(x) = \phi_2(x) \} \). Since \(Y \) is connected, \(A \) is clopen.

A Is Closed: We Assume \(\text{X Hausdorff} \) (Not Necessary But It Simplifies The Argument).

The Map \(\pi : (E, \mathcal{U}) \to (X, \mathcal{V}) \) is Continuous and The Diagonal \(\Delta = \{ (x, x) \mid x \in X \} \) is Closed, Then \(\Delta = \phi_1 \circ \pi \Delta = \phi_2 \circ \pi \Delta \). Since \(\phi_1, \phi_2 \) are lifts, \(\phi_1 = \phi_2 \) on \(\Delta \).

A Is Open: Let \(\phi \in \text{X} \) and let \(U \) be an Event Covered Neighborhood \(\phi(y) \). \(U \) is the \(\phi^{-1}(U) = \bigcup_k U_k \). There is a Unique \(s_0 \) such that \(\phi_1(x) = \phi_2(x) = \phi(y) \). Therefore \(\phi_1(U) \cap \phi_2(U) = U_0 \). Since \(\phi \) is a map, \(\phi(U) \in \mathcal{V} \).

Thus, A is Unique
And since \(p \mid _{S_0} \) is injective, it follows that \(\bar{f}, \bar{f} = \bar{f}_2 \) and hence \(\bar{f}_2 \in A \). Thus \(\overline{\bar{f}} \).

Since \(Y \) is connected, we have \(A = Y \) and so \(\bar{f} \equiv \bar{f}_2 \).

Path Lifting Theorem

Proof: Uniqueness follows from the previous result. To show existence, cover the domain of \(Y \) by every covering open set. Since this set is compact, we find a partition \(0 = t_0 < t_1 < \cdots < t_n = 1 \) of \(I \) such that \(\bar{Y} \mid ([t_{i-1}, t_i])
\in U_{i} \) for \(i = 1 \) to \(n \). Note that \(\bar{Y} = \bar{Y}_i = \bar{Y}_2 \cdots \bar{Y}_n \). Now \(\bar{Y} \mid V_{i-1} \rightarrow \bar{Y}_{i-1} \) is a covering. Then \(\bar{Y}_i \) lies to \(\bar{Y} \mid V_{i-1} \rightarrow \bar{Y}_i \mid V_{i-1} \rightarrow \bar{Y}_i \mid V_{i+1} \rightarrow \cdots \). Proceeding inductively, we have every \(\bar{Y}_i \) to \(\bar{Y}_n \) and then \(\bar{Y} \equiv \bar{Y}_n \) is a lift of \(\bar{Y} \).

Covering Homotopy Theorem

Suppose \(\overline{p} : (E, e_0) \rightarrow (X, x_0) \) is a covering map and that \(\overline{f} : Y \times I \rightarrow X \) is a homotopy.

Proof: 1. If all of \(X \) is eventually covered, then the result is clear.

2. For each \(y \in Y \), there is an open nbhd \(N_y \) of \(y \) and a partition \(0 = t_0 < t_1 < \cdots < t_n = 1 \) of \(I \) such that \(p(N_y) \times ([t_{i-1}, t_i]) \) is contained in an open set \(U_{i} \) of \(X \) (by compactness of \(I \)). Let \(\bar{y}_i = \bar{f}(t, t_i) \). This forms a path in \(X \). Using the same argument as in the path lifting theorem, we have a lift \(\bar{f}_i : N_y \times [t_{i-1}, t_i] \rightarrow X \) of \(\bar{f}_i = f_i \). \(N_y \times [t_{i-1}, t_i] \), by uniqueness of lifting, \(\bar{f}_i \), and \(\bar{f}_i \) is a path on \((N_y \times [t_{i-1}, t_i]) \). It follows that \(\bar{f}_i(t) = \bar{f}(t, t_i) \) is well-defined and continuous.

3. **Corollary:** Suppose \(\overline{f}_0, \overline{f} : (I, i_0) \rightarrow (X, x_0) \) with lifts \(\overline{f}_0, \overline{f} : (I, i_0) \rightarrow (E, e_0) \). If \(\overline{f}_0 = \overline{f}_1 \), rel \(\overline{f}_0 \), then \(\overline{f}_0 = \overline{f}_1 \), rel \(\overline{f}_0 \), respectively, \(\overline{f}_0 \) is \(\overline{f}_1 \).

4. **Proof:** By uniqueness, \(\overline{f}(t, i) = \overline{f}_0(t, i) \), i.e., \(\overline{f} = \overline{f}_0 = \overline{f}_1 \), rel \(\overline{f}_0 \).

5. **Conclusion:** The map \(\overline{p} : \overline{p}_1 : (E, e_0) \rightarrow \overline{p}_2 : (X, x_0) \) is injective.

6. **Proof:** If \(\overline{f} \) is a loop at \(e_0 \) with \(\overline{f}_0 \), then \(\overline{f} \) is a lift of \(\overline{f}_0 \). If \(\overline{f}_0 \) is a lift of \(\overline{f} \), then \(\overline{f} \equiv \overline{f}_0 \).
Q: What is the Image of p_*?

Note that a loop at x_0 lifts to a loop at e_0 is certainly in $\text{Image } D$. If a loop represents an element of the Image of p_*, then it is homotopic to a loop having such a lift. By homotopy lifting the loop itself has such a lift.

Proof: The number of sheets or a cover $p : (E,e_0) \to (X,x_0)$, with E and X path connected, equals the index of $p_* : \pi_1(E,e_0) \to \pi_1(X,x_0)$.

Proof: If x is a loop at x_0, and $(x_0, H) = p_* (\pi_1(E,e_0))$, then the lift \tilde{x} has the same endpoint. Since it is a loop, $\tilde{x} \equiv \tilde{x}'$ from the set of cosets of H to $p^{-1}(x_0)$ by $[\tilde{x}](H) = [\tilde{x}']$. Since E is path connected, \tilde{x} is surjective.

Thus $\tilde{x} \equiv \tilde{x}'$ and \tilde{x} lifts to a loop in E based at e_0. $\Rightarrow \{x_0, [\tilde{x}] \} \in H$.

Lifting Criterion.

Suppose $p : (E,e_0) \to (X,x_0)$ is a covering space and $f : (Y,y_0) \to (X,x_0)$ is continuous with Y path connected and locally path connected. Then a lift $\tilde{f} : (Y,y_0) \to (E,e_0)$ exists $\iff f_* (\pi_1(Y,y_0)) \subseteq p_* (\pi_1(E,e_0))$.

Proof: (\Rightarrow) If \tilde{f} exists, then $p \circ \tilde{f} = f$ $\iff f_* (\pi_1(Y,y_0)) \subseteq p_* (\pi_1(E,e_0))$.

(\Leftarrow) Suppose $f_* (\pi_1(Y,y_0)) \subseteq p_* (\pi_1(E,e_0))$. Let $y \in Y$ and let f be a path from y_0 to y. Then f has a unique lift \tilde{f}. Starting at e_0, define $\tilde{f}(y) = \tilde{f}(1)$. If y' is another such path, then $f_* (\pi_1(Y,y_0)) \subseteq p_* (\pi_1(E,e_0))$. The lift \tilde{f}' is a lift of f starting at e_0 with $[\tilde{f}'] \subseteq p_* (\pi_1(E,e_0))$. Since T is a homotopy h_1 from h_0 to h, which lifts to a loop \tilde{h}_1 in E based at e_0. The homotopy lifts to \tilde{f}'. Since \tilde{f}' is a loop at e_0, so is \tilde{h}_1. By uniqueness of lifts, $\tilde{f} = \tilde{f}'$. Via the common midpoint $\tilde{f}(1) = \tilde{f}'(1)$. So \tilde{f} is well-defined.

Continuity of f is not difficult. Use Local Path Connectivity.

Note: If Y is simply connected, lifts always exist.

Classifying Covering Spaces.

We know $p_* : \pi_1(E,e_0) \to \pi_1(X,x_0)$ is injective.

Q1: Does every subgroup of $\pi_1(X,x_0)$ arise as p_* for some cover? **Existence**

Q2: Can two different covers X_1, X_2 give the same subgroups? **Uniqueness**

In particular, can the trivial subgroup be realized this way? That is, does X have a simply connected cover?
e8: \(X = S^1 \). \(\pi_1(S^1) = \mathbb{Z} \). The subgroups \(\langle n \rangle \) for some \(n \geq 0 \).

For \(n \geq 0 \), let \(X_n = S^1 \) with \(\mathbf{p}_n: X_n \to S^1 \). Given \(\mathbf{p}_n \), \(\mathbf{p}_n(z) = z^n \). \(\mathbf{p}_n \) is \(\pi_1 \)-injective. Then \(\mathbf{p}_n: \pi_1(X_n) \to \pi_1(X) \) is the \(\mathbb{Z} \)-module isomorphism for all \(n \geq 0 \). In particular, \(\mathbf{p}_n(\pi_1(X_n)) = \langle n \rangle \).

If \(n \neq 0 \), take \(X_0 = \mathbb{R} \). Do \(n \neq 0 \) then \(X_n \) and \(X_m \) are distinct covering spaces.

When Can \(X \) Have a Simply Connected Cover?

Necessary Condition: Each \(x \in X \) has a neighborhood \(U \) such that \(\pi_1(U, x) \to \pi_1(X, x) \) is trivial. This is called the *semi-local simple connectivity of \(X \)*.

Why? Suppose \(p: \tilde{X} \to X \) is a covering with \(\pi_1(\tilde{X}) = 0 \). If \(x \in X \), find an evenly covered neighborhood \(U \) of \(x \) and let \(\tilde{U} \) be a sheet. If \(y \) is a loop in \(U \), let \(\tilde{y} \) be the lift to \(\tilde{U} \). \(\tilde{y} \) is null homotopic in \(\tilde{X} \) and \(\Phi \circ p \) (null homotopy) is a null homotopy of \(\tilde{y} \) in \(\tilde{X} \).

Claim: \(\tilde{X} \) locally simply connected.

Proof: If \(X \) is path connected, locally path connected, and locally simply connected, then \(X \) has a simply connected cover \(\tilde{X} \).

Proof: Define \(\tilde{X} = \{ [y] \mid y \in \text{Path in } X \text{ starting at } x \} \). Here \([y] \) denotes the \(\text{Equivalence Class} \) of \(y \). This is just a set. Define \(p: \tilde{X} \to X \) by \(p([y]) = y(x) \).

Since \(X \) is path connected, \(p \) is surjective.

What’s the Topology on \(\tilde{X} \)? Suppose \([y] \in \tilde{X} \). Let \(U \) be a neighborhood \(X \) of \(y(x) \). Let \(\langle y, U \rangle = \{ [y'] \mid y \text{ is a path in } U \text{ beginning at } x(x) \} \). We may as well assume \(U \) is path connected and simply connected.

Claim: The sets \(\langle y, U \rangle \) form a basis for a topology on \(\tilde{X} \). For this, it suffices to show that for \(\langle y_0, U_0 \rangle \cap \langle y_1, U_1 \rangle \neq \emptyset \), there exists \(\langle y, U \rangle \) and a neighborhood \(V \) of \(y(x) \) such that \(\langle y, V \rangle \subset \langle y_0, U_0 \rangle \cap \langle y_1, U_1 \rangle \).

Then there exists \(\langle y_0, V \rangle \) in \(U_0 \) from \(y_0 \) to \(y(x) \) with \(y(x) \in V \). Also \(\langle y_1, U_1 \rangle \). Note that \(\langle y(x), U_1 \rangle \). It follows easily that \(\langle y_0, U_0 \rangle \subset \langle y(x), U_1 \rangle \).

Now \(p(\langle y, U \rangle) = \text{Path Connected Component of } U \text{ containing } y(x) \text{ and since Path Components are Open, } p \text{ is an Open M} \). Since \(p(\langle y, U \rangle) \subset U \), \(p \) is continuous.

Claim: \(\tilde{X} \) is a covering space. Let \(x \in X \). Since \(\tilde{X} \) is locally simply connected, \(\tilde{X} \) has a path connected, simply connected neighborhood \(U \). Then \(p^{-1}(U) \) is \(\bigcup \langle y, U \rangle \) where \(y(x) = x_0 \langle y(x), U \rangle = x \). Given two such \(\langle y_0, U_0 \rangle, \langle y_1, U_1 \rangle \) we see easily that \(\langle f(y_0), U_0 \rangle \cap \langle y_1, U_1 \rangle = \emptyset \) is \(\{ y(x) \} \). \(p^{-1}(U) \) is a disjoint union of open sets. Moreover, \(p|_{\langle y, U \rangle} \) is a Homeomorphism.
A Path from e_0 to (8), where $Y_k: x \mapsto Y(tx)$.

Existence

Proof: Suppose X is path connected, locally path connected, and semi-locally simply connected. Then for every subgroup $H \leq \pi_1(X, x_0)$, there is a covering space $p: X_H \to X$ with $p^*(\pi_1(X, x_0)) = H$ for a suitably chosen $x_0 \in X_H$.

Proof: Let X be the simply connected cover constructed above and define a relation $\sim_H \{x\} = \{x'\}$ if $x(1) = x'(1)$ and $[x, x'] \equiv H$. This is an equivalence relation precisely because H is a subgroup. Let X_H be the quotient of X by this relation. **Note:** If $x(1) = x'(1)$, then $[x, x'] = [H]$ for a path η. In particular, if two points in basic nbhd $\langle x, x' \rangle$ are identified, then the whole nbhd is identified. It follows that the projection $X_H \to X$ $[x] \mapsto x(1)$ is a covering. Let $p_0: X_H \to \pi_1(X_H, x_0)$ be the equivalence class of $[x_0]$. Then the image of $p_0: (X_H, x_0) \to \pi_1(X, x_0)$ is H. If x is a loop in X at x_0, its lift \tilde{x} starting at $[x_0]$ ends at $[x']$. So the image of this lifted path in X_H is a loop $\tilde{x}(\equiv [x'] \equiv [8] \in H)$.
\[\text{Def: An isomorphism of covering spaces } \pi_1: X_1 \to X, \pi_2: X_2 \to X \text{ is a homeomorphism } \]
\begin{align*}
\tilde{f}: \tilde{X}_1 \to \tilde{X}_2 \text{ with } \tilde{f}_i = \pi_i \\
\text{Proof: If } X \text{ is path connected and locally path connected, then two path connected covers } \tilde{X}_1, \tilde{X}_2 \text{ are isomorphic via } f: \tilde{X}_1 \to \tilde{X}_2 \text{ taking } \tilde{x}_i \in \pi_i^{-1}(x) \text{ to } \tilde{f}_i \in \pi_2^{-1}(x) \Leftrightarrow \pi_1 \circ (\tilde{f}_i(\tilde{x}_i, \tilde{x})) = \pi_2 \circ (\tilde{f}_i(\tilde{x}_i, \tilde{x})).
\end{align*}

\[\text{Proof (\Rightarrow): Existence of } f \Rightarrow \pi_1 = \pi_2 \circ f. \pi_2 = \pi_2 \circ f \Rightarrow \pi_1(\pi_1^{-1}(x)) = \pi_2 \circ \pi_1^{-1}(x).
\]

\[\text{Proof (\Leftarrow): Suppose the subgroups are equal. Using the lifting criterion, we lift } \tilde{f} \text{ to a map } \tilde{f}_1: (\tilde{X}_1, \tilde{x}) \to (\tilde{X}_2, \tilde{x}) \text{ with } \tilde{f}_2 \circ \tilde{f}_1 = \tilde{f}. \text{ Similarly, we get } \tilde{f}_1: (\tilde{X}_2, \tilde{x}) \to (\tilde{X}_1, \tilde{x}) \text{ with } \tilde{f}_1 \circ \tilde{f}_2 = \tilde{f}. \text{ By uniqueness of lifts, } \tilde{f}_1 \circ \tilde{f}_2 = \tilde{f} \text{ and } \tilde{f}_2 \circ \tilde{f}_1 = \tilde{f}. \text{ Since these composites fix basepoints } \tilde{x}_1, \tilde{x}_2 \text{ and } \tilde{f}_1, \tilde{f}_2 \text{ are inverse isomorphisms.}
\]

\[\text{Thm: There is a bijection between basepoint preserving isomorphism classes of path connected covering spaces } p: (\tilde{X}, \tilde{x}_0) \to (X, x_0) \text{ and the set of subgroups of } \pi_1(X, x). \text{ If basepoints are ignored, this bijection is a correspondence between iso classes of covers and conjugacy classes of subgroups of } \pi_1(X, x).
\]

\[\text{Proof: It only remains to prove the last statement. We claim that changing basepoint } \tilde{x}_0 \text{ within } \pi_1^{-1}(x) \text{ corresponds exactly to changing } \tilde{f}_0 \text{ to } \tilde{f}_0 \circ \tilde{h} \text{ for some } \tilde{h} \in \pi_1(X, \tilde{x}_0). \text{ Let } \tilde{x}_1 \text{ be another basepoint in } \pi_1^{-1}(x_0) \text{ and let } \tilde{g} \text{ be a path from } \tilde{x}_0 \text{ to } \tilde{x}_1. \text{ Then } \tilde{f}_0 \circ \tilde{g} \text{ maps a cover in } X \text{ to the corresponding cover in } X_0 \text{ with basepoint } \tilde{x}_1. \text{ It is easy to see that } \tilde{f}_0 \text{ and } \tilde{f}_0 \circ \tilde{g} \text{ are isomorphic covers of } \pi_1(X, \tilde{x}_1).
\]

\[\text{Note that if } \tilde{f}_0 \text{ is a loop at } \tilde{x}_0, \text{ then } \tilde{f}_0 \circ \tilde{g} \text{ is a loop at } \tilde{x}_1. \text{ Moreover, } \tilde{g} \text{ and } \tilde{g}^{-1} \tilde{h} \text{ in } \pi_1(X, \tilde{x}_0). \text{ Similarly, } \tilde{g} \text{ and } \tilde{g}^{-1} \tilde{h} \text{ in } \pi_1(X, \tilde{x}_1). \text{ Conversely, to change } \tilde{h} \text{ to } \tilde{h}^{-1} \tilde{g} \tilde{h} \text{ choose a loop } \tilde{g} \text{ representing } \tilde{g} \text{ and lift this to starting at } \tilde{x}_0. \text{ Any loop } \tilde{f}_0 \text{ at } \tilde{x}_0. \text{ Then } \tilde{f}_0 = \tilde{f}_0 \circ \tilde{g} \tilde{h}
\]

\[\text{Cor: A simply connected covering space is a cover of every other covering space of } X \text{. Such a space is called the universal cover (it is unique up to isomorphism).}
\]

\[\text{The action on the fiber}
\]

Let \(p: \tilde{X} \to X \) be a covering space. A path \(\gamma \) on \(X \) has a unique lift \(\tilde{\gamma} \) starting at a given point \(\tilde{x} \). Define \(\gamma: \tilde{X}(\tilde{x}) \to \tilde{X}(\tilde{x}) \) by \(\gamma(\tilde{x}) = \tilde{\gamma}(\tilde{x}) = \tilde{\gamma}(\tilde{x}) \). This is a bijection: \(\gamma \) is an isomorphism. For \(\tilde{x}, \tilde{x}' \), we have \(\gamma_{\tilde{x}, \tilde{x}'} = \gamma_{\tilde{x}', \tilde{x}} \). This reverses order of Hamiltonian class \(\tilde{x} \). We get a homomorphism \(\pi_1(X, x) \to \text{Perm}(\pi_1(X, x), \tilde{x}) \to \tilde{\gamma} \). Call this the action of \(\pi_1(X, x) \) on the fiber.
We can recover $p: \tilde{X} \to X$ from this action as follows. Let $\tilde{X} \to X$ be the
universal cover constructed earlier. Let $F = p^{-1}(x_0)$ and define $h: \tilde{X} \to X, h(\tilde{x}) = \tilde{x}(1)$, where \tilde{x} is a lift of x starting at x_0. h is continuous + even. A local
homeomorphism since a neighborhood of (\tilde{x}, \tilde{x}_0) in $\tilde{X} \times X$ consists of pairs $(\tilde{x} \cdot \gamma, \tilde{x}_0 \cdot \gamma)$ with γ a path in a small neighborhood of $\gamma(1)$. h is injective since X is path-connected. h is
almost certainly not injective. Suppose $h(\tilde{x}, \tilde{x}_0) = h(\tilde{x}', \tilde{x}_0')$. Then γ and γ' are paths from \tilde{x}_0 to the same endpoint and $\gamma_0 = \gamma_0 \gamma^{-1}(\gamma_0)$. Let $x = \gamma \gamma'$, a loop in X. Then $h(\tilde{x}, \tilde{x}_0) = h(x, x_0) = h(x, x_0)$. Conversely, for any loop x we have $h(x, x_0) = h(x, x_0)$. Call this quotient \tilde{X} and let $\tilde{X} \to \tilde{X}$ be the action. \tilde{X} makes sense for any action p of $\pi_1(X, x_0)$ on a set F: $\tilde{X} \to X, (\tilde{x}, \tilde{x}_0) \to h(\tilde{x})$

Deck Transformations

Let $p: \tilde{X} \to X$ be a covering. Any deck transformation of $G(X)$ the set of all isomorphisms $\tilde{X} \to X$.

This is a group under composition, called the group of deck transformations.

E.g. $p: \mathbb{R} \to S^1, G(\mathbb{R}) \cong \mathbb{Z}$ since the isomorphism is to the translations of \mathbb{R} by \mathbb{Z}, not \mathbb{R}.

$p: S^1 \to S^1, z \to z^n, G(S^1) \cong \mathbb{Z}_n$ (rotations of S^1 through angles $2\pi/k$).

Note that by unique lifting, a deck transformation is completely determined by where

\tilde{X} sends a single point. Assuming X path-connected.

Def: A covering $p: \tilde{X} \to X$ is called **normal** if for each $x \in X$ and each $\tilde{x}, \tilde{x}' \in p^{-1}(x)$

there is a deck transformation taking \tilde{x} to \tilde{x}'.

Non-examples

$p: \tilde{X} \to S^1 \vee S^1$ takes all nodes on

\tilde{X} to the wedge point. Note

$p_1(\tilde{X}) \cong \mathbb{Z}$. Also $p_1(S^1) \to p_1(S^1)$

is $\{a\} \to \{a, b\} \subset F$.

There is no deck transformation taking \tilde{x} to \tilde{x}' since \mathbb{Z} would be a loop at \tilde{x}', but there are no non-trivial ones.
1. The covering space is normal \(\iff H \triangleleft \pi_1(X, x_0) \).

2. \(G(X) \) is isomorphic to \(N(H)/H \), where \(N(H) \) is the normalizer of \(H \) in \(\pi_1(X, x_0) \).

In particular, \(G(X) \cong \pi_1(X, x_0)/H \) if \(X \) is normal and \(H \) is the universal covering \(\tilde{X} \rightarrow X \).

Proof: Recall that a covering \(\tilde{X} \rightarrow X \) with \(\tilde{x}_0 \rightarrow x_0 \) corresponds to a covering \(\tilde{X} \rightarrow X \) of \(H \) by \(\tilde{X} \rightarrow \pi_1(X, x_0) \) where \(\tilde{X} \rightarrow \pi_1(X, x_0) \) is a group action. Then \(\tilde{X} \rightarrow \pi_1(X, x_0) \) is a homomorphism: \(\tilde{X} \rightarrow \pi_1(X, x_0) \) and \(\tilde{X} \rightarrow \pi_1(X, x_0) \) is a homomorphism that is equivalent to the existence of a deck transformation \(T \rightarrow \pi_1(X, x_0) \). So, the covering is normal \(\iff N(H) = \pi_1(X, x_0) \).

Now define \(\tilde{X} \rightarrow \pi_1(X, x_0) \) by \(\tilde{X} \rightarrow \pi_1(X, x_0) \) and \(\tilde{X} \rightarrow \pi_1(X, x_0) \) is a homomorphism: \(\tilde{X} \rightarrow \pi_1(X, x_0) \) and \(\tilde{X} \rightarrow \pi_1(X, x_0) \) is a homomorphism that is equivalent to the existence of a deck transformation \(T \rightarrow \pi_1(X, x_0) \). More generally, we have the idea of a group action. Let \(G \) be a group and \(Y \) a space. An action of \(G \) on \(Y \) is a homomorphism \(\tilde{G} \rightarrow \text{Hom}(Y) \), where \(\tilde{G} \rightarrow \text{Hom}(Y) \) for \(\tilde{g}(y) = \tilde{g}(y) \) \(\forall y, \tilde{g} \in G, y \in Y \). We usually assume \(\tilde{g} \) is injective.

Useful Condition for Actions

Every \(y \in Y \) has a neighborhood \(U \) such that all images \(g(y) \) for \(g \in G \) are distinct, i.e., \(g_1(U) \cap g_2(U) \neq \emptyset \iff g_1 = g_2 \).

Example: \(G \) acts on \(X \): Suppose \(U \subset X \) projects homomorphically to \(X \). Then \(g(U) \cap g(U) \neq U \), where \(g(U) = g(U) \) for some \(U, \tilde{g} \in U \). But since \(g(U) \) and \(g(U) \) lie in same \(\tilde{g}(g(U)) \) and \(\tilde{g}(g(U)) \) consists of a single point, \(g(U) \). Then \(g_1(\tilde{g}(U)) \) is a point and so \(g_1 = g_2 \).

Given an action, we can form the quotient space \(Y/G \): \(y \rightarrow g(y), g \in G \). The points of \(Y/G \) are the orbits \(Gy = \{ \tilde{g}(y) \mid g \in G \} \).

Example: For a normal covering \(\tilde{X} \rightarrow X \), \(\tilde{X}/G(X) \rightarrow X \).

Example: \(\mathbb{Z}_2 \) acts on \(S^n \): \(X \rightarrow X \), \(n/\mathbb{Z}_2 \rightarrow \mathbb{R}n \) and this action satisfies the condition since it is in the open upper hemisphere \(U \), \(g(U) \cap U = \emptyset \).
Galois Correspondence

Let \(G = \text{Symmetry Group of This Grid} \). \(G \) contains a copy of \(\mathbb{Z} \times \mathbb{Z} : (x, y) \mapsto (x + 1, y + 2) \). Call This Subgroup \(H \).

Bott Lemma: \(\gamma \) is the Glue Reflection: Translate up 1 unit + Reflect Across Vertical Line.

Conclusion: The Identity Takes a Square to Itself So This Action is Nice. Note The Following:

1. \(\mathbb{R}^2 / G \) is the Klein Bottle
2. \(H \) has index 2 in \(G \) so \(H \subset G \). \(\mathbb{R}^2 / H = T \) and \(\mathbb{R}^2 / H \to \mathbb{R}^2 / G \) is a \(2:1 \) Cover.

Proof: If \(G \) acting on \(Y \) is Nice, Then

1. \(\pi : Y \to Y / G \), \(y \mapsto \gamma y \) is a Normal Covering Space.
2. If \(Y \) is Path Connected, Then \(G = G(Y) \).
3. \(G \cong \pi_1(Y / G) / \pi_1(Y) \) if \(Y \) Path Connected + Locally Path Connected.

Proof: Let \(U \subset Y \) be an open set satisfying the condition. Then \(\pi \) identifies all the distant homeomorphic sets \(\pi_1(U / G) / \pi_1(Y) \). To A Single Open Set \(\pi(U) / G \). By Definition of The Quotient Topology, \(\pi \) restricts To A Homeomorphism From \(g(U) \) To \(\pi(U) \) for Every \(g \in G \).

Thus, \(\pi : Y \to Y / G \) is a covering. Every \(g \in G \) Acts As A Deck Transformation + The Covering Is Normal Since \(g \circ \pi \) Takes \(\pi^{-1}(U) \) To \(\pi^{-1}(U) \). \(G = G(Y) \) with Equality If \(Y \) is Path Connected Since If \(\phi \in G(Y) \) Then For Any \(y \in Y \), \(y \) and \(\phi(y) \) Are In The Same Orbit and There Is A \(g \in G \) With \(g(y) = \phi(y) \). Since Deck Transformations Are Uniquely Determined by Action On A Single Point.

Example: \(\mathbb{R}^2 \)

Theorem: \(X \) is a covering \(S^1 \to S^1 / \mathbb{Z} = \mathbb{R} / \mathbb{Z} \) and since \(\pi_1(S^1) = 0 \), we have \(\pi_1(\mathbb{R} / \mathbb{Z}) \cong \pi_1([0, 2\pi]) / \pi_1(S^1) \cong \mathbb{Z} \).

Example: \(\mathbb{R}^2 / \mathbb{Z} \times \mathbb{Z} \) is The Klein Bottle

Example: \(\mathbb{R}^2 / \mathbb{Z} \times \mathbb{Z} \) is The Klein Bottle

Notes:

- **Example:** \(\mathbb{R}^2 \)
- **Theorem:** \(X \) is a covering \(S^1 \to S^1 / \mathbb{Z} = \mathbb{R} / \mathbb{Z} \) and since \(\pi_1(S^1) = 0 \), we have \(\pi_1(\mathbb{R} / \mathbb{Z}) \cong \pi_1([0, 2\pi]) / \pi_1(S^1) \cong \mathbb{Z} \).
- **Example:** \(\mathbb{R}^2 / \mathbb{Z} \times \mathbb{Z} \) is The Klein Bottle

Notes:
Def: A Graph is a 1-Dimensional CW-Complex. A Tree is a Contractible Graph.

Pf: Every Connected Graph X contains a Maximal Tree (a Tree containing all vertices of X). In fact, every Tree is contained in a Maximal Tree.

Pf: Actually Prove The Following: Let $X_0 \subset X$ be an arbitrary Subgraph. We will construct a Subgraph $Y \subset X$ containing all vertices of X such that X_0 is a Deformation Retract of Y. Taking $X = X_0$ gives the result.

First construct $X_0 < X_1 < ...$ by letting X_i be obtained from X_{i-1} by attaching Closures $\overline{E_i}$ of all edges $E_i \in X - X_{i-1}$ having at least one endpoint $\in X_i$.

Note That U_i is open in X since a Neighborhood of a Point in X_i is contained in X_i. Also U_i is closed. Since D is a Union of Closed Edges and X has the Weak Topology, since X is connected, $U_i = X$.

Now set $Y_0 = X_0$. Assume $Y_i < X_i$ has been constructed to contain all vertices of X_i. Let Y_i be obtained from Y_i by attaching one edge connecting each vertex of $X_i - X_{i-1}$ to Y_i. Let $Y = UY_i$. Then Y_i retracts to Y_i. Doing this Retraction over $\left[\frac{1}{2n}, \frac{1}{2^{i+1}}\right]$ yields a Retraction $Y \to X_0$.

Pf: Let X be a Connected Graph and let T be a Maximal Tree. Then $\pi_1(X)$ is a Free Group with basis $\{f_a\}$ corresponding to edges E_a in $X - T$.

Pf: Fix $x \in T$. Each E_a determines a Loop in X by Choosing a Path y_a from x to one end of E_a, then along E_a, then back to x. Along a Path u_a (x_a and u_a lie in T).

Let $F = y_a u_a$. Since T is Simply Connected, $\{F\}$ determines only one Ed. The Quotient Map $X \to X/T$ is a Homotopy Equivalence. Since T is a retract of X, the Quotient Map $X \to X/T$ is a Homotopy Equivalence. Since T is a retract of X, the Quotient Map $X \to X/T$ is a Homotopy Equivalence.
Theorem: Every Subgroup of a Free Group is Free.

Proof: Given a free group F, choose a graph X with $\pi_1 X = F$. If $G \leq F$ is a subgroup, there is a covering space $p : \tilde{X} \rightarrow X$ with $p_*(\pi_1(\tilde{x})) = G \cong \pi_1(X) \cong G$. Since X is a graph, $\pi_1(X)$ is free, so G is free.

Note: This is a purely algebraic result proven via topology!