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1. Introduction

The question of existence of conformal metrics of constant or more generally prescribed 
curvature on riemannian manifolds is a recurrent problem in differential geometry and 
geometric analysis. Indeed a positive or a negative answer to such a question has far 
reaching consequences on the geometry and topology of the underlying manifold. The 
Poincaré uniformization’s theorem on closed surfaces, the Yamabe problem on rieman-
nian manifolds of dimension n ≥ 3 and the Nirenberg’s problem on standard spheres Sn, 
just to name a few, are well known and well studied mathematical problems.
A similar question, which goes back to Picard [33,34] deals with the existence of con-
formal metrics of constant or prescribed curvature on surfaces with conical singularities. 
After the pioneering work of Picard at the beginning of the last century, such a problem 
has been systematically investigated by Berger [6], McOwen [37,38] and Troyanov [40,39]. 
More recently Bartolucci-deMarchis-Malchiodi [4] used a Morse theoretical approach to 
prove further existence and multiplicity results.
In this paper, a first part of a series of papers, we address the problem of existence of 
conformal conical metrics of constant, or more generally prescribed Q-curvature on four 
dimensional riemannian manifolds. In the following we will explain in some details the 
geometric context of such a problem:
Given (M, g) a compact four-dimensional Riemannian manifold, the Q-curvature and 
the Paneitz operator are defined respectively, by

Qg = − 1
12

(
ΔgRg −R2

g + 3|Ricg|2
)
, (1.1)

Pgϕ = Δ2
gϕ + divg

((2
3Rgg − 2Ricg

)
∇ϕ

)
, (1.2)

where Ricg is the Ricci tensor and Rg is the scalar curvature of (M, g).
Similar to second order equations a natural question is the following uniformization 
statement: given a four-dimensional Riemannian manifold (M, g), is there a metric g̃ =
e2ug in the conformal class of g with constant Q-curvature?

Under the conformal change of metric above, the Paneitz operator is conformally 
covariant:

Pg̃ϕ = e−4uPgϕ, (1.3)
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and the Q-curvature of g̃ is given by

Pgu + 2Qg = 2Qg̃e
4u. (1.4)

From (1.3) and (1.4), the question above is equivalent to the existence of solution to 
this fourth order equation:

Pgu + 2Qg = 2Q̄e4u, (1.5)

where Q̄ is a real constant.
Integrating with respect to the volume element dVg, we can see that

κP =
ˆ

M

QgdVg

is a constant in the conformal class of g, here we also point out the Gauss-Bonnet-Chern 
formula that links the local curvature to the global topology of M is:

ˆ

M

(
Qg + 1

8 |Wg|2
)
dVg = 4π2χM ,

where Wg denotes the Weyl’s tensor of (M, g) and χM is the Euler characteristic of M . 
From this equality and the aforementioned conformal covariance property it is not hard 
to imagine that Pg and Qg are related to a number of studies such as Moser-Trudinger 
type inequalities, log-determinant formulas, the compactification of locally flat manifolds 
and higher order analogous equations, see [5,7,8,13,14,16,25]. In many of these studies 
the kernel of Pg is usually assumed to consist only of constants:

Ker (Pg) = {constants}. (P)

In this paper consider the following prescribed Q-curvature equation involving singular 
sources

Pgu + 2Qg = 2he4u − 8π2
N∑
j=1

γj

(
δqj −

1
volg(M)

)
, (1.6)

where h is a smooth positive function, N ∈ N is a positive integer, q1, · · · , qN are distinct 
points on M and where Dirac measures δqj are located, γj > −1 are constants.
Solutions to (1.6) have the following geometric interpretation: Setting g̃ := e2ug we 
obtain a metric conformal to g on M \ {q1, · · · , qN} which has a conical singularity at 
each qi. One says that g̃ is represented by the divisor D :=

∑N
i=1 γiqi. See Fang-Ma [20]. 

Furthermore due to Gauss-Bonnet-Chern formula for conic four manifolds, see [14], [13], 
[12], we have that
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κ̃P :=
ˆ

M

Qg̃dVg̃ =
ˆ

M

QgdVg + 8π2
N∑
i=1

γi

is a conformal invariant.
Considerable progress has been made for the regular case of (1.6), that is N = 0 in (1.6). 
Under the assumption that the Kernel of the Paneitz operator contains only constants, 
Chang-Yang [16] proved existence for κP < 8π2, Djadli-Malchiodi [18] settled the case 
that κP �= 8π2n for any n ∈ N. Li-Li-Liu [27] gave a necessary condition for existence in 
the case κP = 8π2, Ahmedou-Ndiaye [2] developed a Morse theory the case of κP = 8π2n

and Ndiaye [32] combined the celebrated topological argument of Bahri-Coron [3] with 
the critical point theory at infinity in [2] to derive some existence results. We point out 
that an essential estimate related to the proof in [18] is a priori estimate when κP is 
away from 8π2N proved by Malchiodi in [29]. Later in [19], Druet and Robert extended 
such an a priori estimate to the following more general equation in the same class:

Pgu + 2b = 2he4u, (1.7)

where b is a smooth function. If b = Qg is the Q-curvature of the conformal metric e2ug. 
More specially, assuming hk → h0, hk ≥ c0 > 0 and bk → b0, then any sequence of 
solutions {uk} of (1.7) with h = hk and b = bk is uniformly bounded under the condition ´
M

b0dVg �= 8π2n, see also Malchiodi [29].
However, bubbling can occur when 

´
M

b0dVg = 8π2n for some positive integer n. The 
understanding of this bubbling phenomenon is vital for the existence problem. The study 
of the blow-up profile and other blow-up phenomena for the Paneitz operator and other 
elliptic equations has attracted much interest recently and the reference is too numerous 
to be mentioned, we just list a few closely related to our article in our humble opinion: 
[1,9,15,17,22–24,27,30,36,31,35,41,42,44]. Particularly, in [44], the third named author 
and Weinstein have obtained sharp estimates on the difference near the blow-up points 
between a bubbling sequence of solutions to (1.7) with h = hk and b = bk and standard 
bubbles, and obtained the vanishing rate under the assumption that (M, g) may not be 
locally conformally flat.

When taking the singularities into the account as in (1.6), we consider the following 
more general singular equation:

Pgu + 2b = 2he4u − 8π2
N∑
j=1

γj

(
δqj −

1
volg(M)

)
, (1.8)

where h is a positive smooth function on M and b ∈ C1(M). Before stating our first 
main result, we define a critical set Γ as follows:

Γ =
{

16π2n + 16π2
∑

(1 + γj) : n ∈ N ∪ {0} and J ⊂ {1, · · · , N}
}
.

j∈J
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In order to obtain the a priori estimates and existence results, we mainly study the 
blow-up phenomena for (1.8). Let us consider the following equations:

Pguk + 2bk = 2hke
4uk − 8π2

N∑
j=1

γj

(
δqj −

1
volg(M)

)
in M, (1.9)

with normalized total integration:
ˆ

M

e4ukdVg = 1. (1.10)

Let {uk} be a sequence of solutions of (1.9). We say p is a blowup point of uk if there 
exists a sequence pk → p such that

uk(pk) + 8π2
N∑
j=1

γjG(pk, qj) → ∞.

uk is called a sequence of blowup solutions if it has a blowup point. Here G(x, p) is the 
Green’s function of Pg defined in (3.3). For blowup solutions we assume that coefficient 
functions are regular enough to have limits:

‖ bk − b0 ‖C1(M)→ 0, ‖ hk − h0 ‖C1(M)→ 0, 0 < c0 < h0 < 1/c0. (1.11)

Without loss of generality, we assume the integration of hke
uk is 1:

Our first main result asserts that a priori estimate holds for uk, as long as 2 ́
M

bk
does not tend to the following critical set:

Γ =
{

16π2n + 16π2
∑
j∈J

(1 + γj) : n ∈ N ∪ {0} and J ⊂ {1, · · · , N}
}
.

Theorem 1.1 (A priori estimate). Suppose (P) holds, b and h satisfy (1.11). If {uk} is a 
sequence of solutions of (1.9) under restriction (1.10) and 

´
M

2b0dVg ∈ R+ \ Γ,

∣∣∣uk(x) + 8π2
N∑
j=1

γjG(x, qj)
∣∣∣ ≤ C, ∀x ∈ K ⊂⊂ M \ {q1, · · · , qN}

for some C = C(K) > 0 independent of k.

In particular, the a priori estimate holds for the singular prescribing Q-curvature 
equations. Indeed Theorem 1.1 is an extension of previous results of Malchiodi [29], 
Druet-Robert [19] and Fardoun-Regbaoui [21] for the regular prescribed Q-curvature 
equation. We point out that the argument in the regular case uses in a crucial way the 
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explicit form of the bubble, while our argument uses only the asymptotic behavior of 
the bubble and is based on a Pohozaev identity for equations under conformal normal 
coordinates (see [44]).

If 
´
M

2b0dVg ∈ Γ and uk does blowup around a singular source q ∈ M , our next result 
says that if γq is not a positive integer, the Spherical Harnack inequality holds for uk

around q:

Theorem 1.2. Suppose {uk} be a sequence of solutions of (1.9) that also satisfies (1.10), 
(P) holds and b, h satisfy (1.11). If qj is a blowup point of uk and γqj /∈ N, there exist 
C, δ > 0 independent of k such that

max
B(qj ,δ)

(uk(x) + log |x− qj |) ≤ C, |x− qj | ≤ δ.

Establishing Spherical Harnack inequality for bubbling solutions is critical for appli-
cations like a priori estimate, degree counting program and existence results. The readers 
may look at recent breakthroughs of the third author and Wei [43] for Liouville equations.

One indispensable part of the blowup analysis for the Q-curvature equation is the 
classification of global solutions on R4. For this purpose we consider the limiting equation 
used to describe the profile of bubbling solutions:

Δ2ũ = 6e4ũ − 8π2γδ0,

ˆ

R4

e4ũ < ∞,

where γ > −1 is a constant and the equation is defined on R4. Using

Δ2( 1
8π2 log 1

|x| ) = δ0, and u(x) = ũ(x) − γ log |x|,

we see that the equation for ũ is equivalent to

Δ2u(x) = 6|x|4γe4u(x), in R4, |x|4γe4u(x) ∈ L1(R4). (1.12)

Clearly if u is a solution of (1.12), so is uλ defined by

uλ(x) = u(λx) + (1 + γ) log λ (1.13)

for any given λ > 0. Our next main result is

Theorem 1.3. Suppose that u is a solution of (1.12) with γ > −1 and |u(x)| = o(|x|2) at 
infinity. Then

(i)
´
R4 6|y|4γe4u(y)dy = 16π2(1 + γ).

(ii) u(x) = 3
2

´
4 log

( |y| )
|y|4γe4u(y)dy + C0 for some C0 ∈ R,
4π R |x−y|
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(iii) Furthermore, if −1 < γ < 0, u is radially symmetric about the origin and is unique 
up to scaling in (1.13).

Note that (i) is a quantization result and is true for all γ > −1. (iii) completes the 
classification for all γ ∈ (−1, 0]. (ii) is also proved as a part of the main theorem in [24]. 
As a corollary of the classification in (iii) we now derive a more specific description of 
the asymptotic behavior of u: For simplicity we use μ = 1 + γ.

Corollary 1.4. Let u be a solution of (1.12) with γ ∈ (−1, 0) and suppose |u(x)| = o(|x|2)
at ∞. Then for M = [ 1

4μ ], there exists c0 ∈ R such that

u(x) = −2μ log |x| + c0 +
M∑
l=1

cl
|x|4lμ + O( 1

|x| ), |x| > 1 (1.14)

where cl = 3e4
∑l−1

s=0 cs

32l2μ2(1−2lμ)(1+2lμ) , l = 1, .., M ;

−Δu(x) = 4μ
|x|2 +

M∑
l=1

4cllμ(2 − 4lμ)
|x|2+4lμ + O( 1

|x|3 ), |x| > 1 (1.15)

Note that [ 1
4μ ] stands for the largest integer no greater than 1

4μ . If γ > −3
4 , M = 0, the 

third term in (1.15) does not exist in this case. If the o(|x|2) assumption in Theorem 1.3
is removed, it is established in [24] by Hyder et al. that if u is a solution of (1.12) with 
γ > −1, after an orthogonal transformation, u(x) can be represented by

u(x) = 3
4π2

ˆ

R4

log
( |y|
|x− y|

)
|y|4γe4u(y)dy −

4∑
j=1

aj(xj − x0
j)2 + c0 (1.16)

for some c0 ∈ R. In this case we can prove a symmetry result: If γ ∈ (−1, 0) and aix0
i = 0

for all i, u is a radial function. See Theorem 2.10 for more detail.

Remark 1.5. Our quantization and classification results directly point to the following 
important open questions: 1. Theorem 1.3 does not cover the case that γ > 0, except for 
the quantization result. The symmetry and profile for global solutions of (1.12) in this 
case are largely unknown.

2. If the sub-quadratic growth assumption (u(x) = o(|x|2)) is removed, it is not clear 
to us how the total integration of global solutions will change. It is proved in Lin [28]
that for γ = 0 solutions with sub-quadratic growth give the largest integration. It is also 
proved by Hyder et al. [24] that for γ < 0 there are non-radial solutions whose integration 
is greater than that of radial ones. It can be easily derived from our Theorem 2.10 that 
if γ < 0 and aix0

i = 0 for all i, the one with the sub-quadratic growth gives the largest 
integration. However, no information is known for other situations.
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Here we briefly outline the strategy of the proofs in our paper. For the proof of the 
classification result for globally defined singular equation, we follow the argument of Lin 
[28] but we need to take care of all the complications caused by the singular source. 
In particular the method of moving planes relies crucially on the integral form of the 
global solutions. We are able to prove the complete classification for γ ∈ (−1, 0] and 
a quantization result for all γ > −1. For blowup solutions we first use a small-energy 
lemma (Lemma 4.1) to prove that there are at most finite blowup points. Then we 
take advantage of a Pohozaev identity established by Weinstein-Zhang [44] to describe a 
precise asymptotic behavior of blowup solutions around a blowup point. Then the total 
integration as well as precise asymptotic behavior of solutions can be further determined. 
With this information the critical set Γ can be identified and if the total integral of 2b does 
not tend to Γ we obtain a priori estimate. The idea to prove Theorem 1.2 is as follows: If 
the spherical Harnack inequality is violated, there should be finite small bubbling circles 
around the singular source all tending to the singular source. Around each tiny bubbling 
disk there is a Pohozaev identity, and a “big” ball that includes all these tiny balls also 
has a Pohozaev identity. The comparison of these Pohozaev identities implies that the 
strength of the singular source has to be an integer.

The organization of this paper is as follows. In section 2 we analyze the globally defined 
solutions and proved the quantization and the classification results stated in Theorem 1.3
and Corollary 1.4. Then in Section 3, we list some useful facts about the conformal normal 
coordinates and Pohozaev identity and in section 4, we perform a blow-up analysis near 
singular points. Section 5 is devoted to a concentration-compactness theorem and a priori 
estimate for the singular prescribing Q-curvature equation on 4-manifolds. Theorem 5.5
is also established in this section. Finally we provide is the appendix an useful estimate 
of the difference between the geodesic distance and the Euclidean one for nearby points 
on the manifold.

2. Entire solutions of fourth order singular Liouville type equations in R4

In this section, we will follow the argument of Lin [28] to analyze solutions of (1.12)
and prove Theorem 1.3 and Theorem 2.10.

2.1. Asymptotic behavior of entire solutions

Our argument is progressive in nature and we shall obtain a rough estimate of u at 
infinity. For this purpose we set

v(x) := 3
4π2

ˆ

R4

log
( |x− y|

|y|
)
|y|4γe4u(y)dy, (2.1)

which is obviously a solution of
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Δ2v(x) = −6|x|4γe4u(x), in R4. (2.2)

The asymptotic behavior of u has a large to do with that of v, so in the first lemma we 
derive a rough upper bound of v. For convenience we set

α = 3
4π2

ˆ

R4

|y|4γe4udy. (2.3)

Lemma 2.1. Suppose u is a solution of (1.12) and let α be given as in (2.3). Then

v(x) ≤ α log |x| + C (2.4)

for some constant C.

Proof. Since the goal is to describe asymptotic behavior it is natural to assume |x| > 4. 
For such x, we decompose R4 = A1 ∪A2, where

A1 =
{
y : |y − x| ≤ |x|

2

}
, A2 =

{
y : |y − x| ≥ |x|

2

}
.

For y ∈ A1, log |x−y|
|y| ≤ 0 because |y| ≥ |x| − |x − y| ≥ |x|

2 ≥ |x − y|, thus

ˆ

A1

log
( |x− y|

|y|
)
|y|4γe4u(y)dy ≤ 0

and

v(x) ≤ 3
4π2

ˆ

A2

log
( |x− y|

|y|
)
|y|4γe4u(y)dy ≤ 0.

To evaluate the integral over A2, we first make two trivial observations:

|x− y| ≤ |x| + |y| ≤ |x||y|, if |y| ≥ 2,

log |x− y| ≤ log |x| + C, if |y| ≤ 2

where |x| > 4 is used. Consequently
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v(x) ≤ 3
4π2

ˆ

A2

log
( |x− y|

|y|
)
|y|4γe4u(y)dy

≤ 3
4π2

{
log |x|

ˆ

A2∩{|y|≥2}

|y|4γe4udy +
ˆ

A2∩{|y|≤2}

log
( |x− y|

|y|
)
|y|4γe4udy

}

≤ 3
4π2

{
log |x|

ˆ

A2

|y|4γe4udy + C

ˆ

A2∩{|y|≤2}

|y|4γe4udy

−
ˆ

A2∩{|y|≤2}

(
log |y|

)
|y|4γe4udy

}

≤ 3
4π2 log |x|

ˆ

R4

|y|4γe4udy + C.

Lemma 2.1 is established. �
Before proving a lower bound of v(x) we derive an expression of Δu(x) in integral 

form.

Lemma 2.2. Suppose u is a solution of (1.12). Then there exists a constant C1 ≥ 0 such 
that

Δu(x) = − 3
2π2

ˆ

R4

1
|x− y|2 |y|

4γe4u(y)dy − C1. (2.5)

Proof. Let w(x) = u(x) + v(x). Then from the equations of u and v in (1.12) and (2.2), 
we have Δ2w = 0 in R4. Hence, Δw is a harmonic function in R4. By the mean value 
property of harmonic functions, we have, for any x0 ∈ R4 and r > 0,

Δw(x0) = 2
π2r4

ˆ

B(x0,r)

Δw(y)dy = 2
π2r4

ˆ

∂B(x0,r)

Δw(y)dσ,

where π
2

2 is the volume of the unit ball. That is

r

4Δw(x0) = −
ˆ

|y−x0|=r

∂w

∂r
(y)dσ, (2.6)

where −́|y−x0|=r
f(y)dσ = 1

2π2r3

´
|y−x0|=r

f(y)dσ denotes the integral average of f over 
∂B(x0, r). Then integrating the identity above along r, we get

r2

8 Δw(x0) = −
ˆ

wdσ − w(x0).

|y−x0|=r
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Therefore, the Jensen inequality implies

exp
(r2

2 Δw(x0)
)
≤ e−4w(x0) exp

(
4 −

ˆ

|y−x0|=r

wdσ
)

≤ e−4w(x0) −
ˆ

|y−x0|=r

e4wdσ

From Lemma 2.1, we have w(x) = u(x) +v(x) ≤ u(x) +α log |x| +C, and as a consequence

∞̂

0

r3−4α+4γ exp
(Δw(x0)

2 r2)dr ≤
ˆ

R4

|x|−4α+4γe−4w(x0)e4w(x)dx

≤C

ˆ

R4

|x|−4α+4γe4u(x)|x|4αdx = C

ˆ

R4

|x|4αe4udx < +∞,

which means

r3−4α+4γ exp
(Δw(x0)

2 r2
)
∈ L1([1,+∞)

)
.

From here we see Δw(x0) ≤ 0 for all x0 ∈ R4. Liouville’s Theorem implies that there 
exists some constant C1 ≥ 0 such that Δw(x) ≡ −C1 in R4. Lemma 2.2 is established 
based on this and

Δv(x) = 3
2π2

ˆ

R4

1
|x− y|2 |y|

4γe4u(x)dy. �

With the help of the representation for Δu, we can estimate v(x) from below for |x|
large. We will use following result in Lemma 2.3 of [28].

Let h(x) be the solution of

{
Δ2h(x) = f(x), in Ω,

Δh(x) = h(x) = 0, on ∂Ω,

where Ω is a bounded domain of R4.

Lemma 1. [28]
Suppose f ∈ L1(Ω̄). Then for any δ ∈ (0, 32π2), there exists a constant Cδ > 0 such 

that
ˆ

exp
( δ|h|
‖ f ‖L1

)
dx ≤ Cδ(diam Ω)4,
Ω
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where diam Ω denotes the diameter of Ω.

Lemma 2.3. Let u be a solution of (1.12) and v be in (2.1). Then for given ε > 0, there 
exists a constant R = R(ε) only depending on ε such that

v(x) ≥ (α− ε) log |x|, |x| > R(ε). (2.7)

Proof. We first prove a claim slightly weaker than (2.7): for any ε > 0, there exists 
R = R(ε) > 0 such that

v(x) ≥ (α− ε

2) log |x| + 3
4π2

ˆ

B(x,1)

(log |x− y|)|y|4γe4u(y)dy. (2.8)

To prove (2.8) we consider R4 as a disjoint union of three sets: R4 = A1∪A2∪A3, where

A1 = {y : |y| < R0},

A2 = {y : |x− y| ≤ |x|/2, |y| ≥ R0},

A3 = {y : |x− y| ≥ |x|/2, |y| ≥ R0}.

Then we choose R0 = R0(ε) sufficiently large so that

3
4π2

ˆ

A1

log
( |x− y|

|y|
)
|y|4γe4u(y)dy − α log |x|

= 3
4π2 log |x|

ˆ

A1

log |x− y| − log |x| − log |y|
log |x| |y|4γe4u(y)dy − ε

8 log |x|

≥ − ε

4 log |x|

for large |x|. Thus we have

3
4π2

ˆ
log

( |x− y|
|y|

)
|y|4γe4u(y)dy ≥ (α− ε

4) log |x|. (2.9)

A1
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For x ∈ A2 and |x| large, we have |x|2 ≤ |x| ≤ 3
2 |x|. Then

ˆ

A2

log
( |x− y|

|y|
)
|y|4γe4u(y)dy

=
ˆ

A2

(log |x− y|)|y|4γe4u(y)dy −
ˆ

A2

(log |y|)|y|4γe4u(y)dy

≥
ˆ

B(x,1)

(log |x− y|)|y|4γe4u(y)dy − log(2|x|)
ˆ

A2

|y|4γe4u(y)dy.

(2.10)

For y ∈ A3, we use two trivial inequalities: |x − y| ≥ |x|
2 ≥ |y|

4 if |y| ≤ 2|x| and 

|x − y| ≥ |y| − |x| ≥ |y|
2 if |y| ≥ 2|x|. Clearly in both cases, we have

|x− y|
|y| ≥ 1

4 , y ∈ A3.

Therefore,

3
4π2

ˆ

A3

log
( |x− y|

|y|
)
|y|4γe4u(y)dy ≥ log 1

4

ˆ

A3

|y|4γe4u(y)dy. (2.11)

From (2.9), (2.10), (2.11) and |y|4γe4u(y) ∈ L1(R4), we obtain (2.8).
Next, we show that

ˆ

B(x,1)

(log |x− y|)|y|4γe4u(y)dy ≥ −C (2.12)

for some positive constant C. For this purpose we set

ũ(x) = u(x) + γ log |x| (2.13)

Then ũ satisfies {
Δ2ũ(x) = 6e4ũ(x) − 8π2γδ0, in R4,

e4ũ ∈ L1(R4).
(2.14)

Let 0 < ε0 < π2 and R0 = R0(ε0) be sufficiently large such that

6
ˆ

B(x,4)

|y|4γe4u(y)dy = 6
ˆ

B(x,4)

e4ũ(y)dy ≤ ε0, for |x| ≥ R0, (2.15)

then we let h be the solution of
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{
Δ2h(x) = 6e4ũ(y), in B(x, 4),
h(x) = Δh(x) = 0, on ∂B(x, 4).

From Lemma 1, we can see that for ε0 > 0 small,

ˆ

B(x,4)

e24|h|dy ≤ c1 (2.16)

for some constant c1 independent of x.
Next we set q(y) = ũ(y) − h(y) for y ∈ B(x, 4), which clearly satisfies

{
Δ2q(y) = 0, in B(x, 4),
q(y) = ũ(y), Δq(y) = Δũ(y), on ∂B(x, 4).

Let q̃(y) = −Δq(y). We see that for |x| large enough and y ∈ ∂B(x, 4)

q̃(y) = − Δũ(y) = −Δu(y) − γΔ(log |y|) = −Δu(y) − 2γ
|y|2 .

By setting

q̂(y) = q̃(y) + 2γ
|y|2 = −Δu(y) = 3

2π2

ˆ

R4

1
|z − y|2 |z|

4γe4u(z)dz + C1, y ∈ B(x, 2),

we obviously have q̂(y) > 0 on ∂B(x, 4), and hence q̃(y) > −2γ/|y|2 on ∂B(x, 4). Ob-
serving that 1/|y|2 is the fundamental solution of Δ. In other words, q̂(y) is harmonic 
in B(x, 4) with positive boundary value on ∂B(x, 4). The maximum principle implies 
q̂ > 0 in B(x, 4). Thus, by the Harnack inequality and mean value property of harmonic 
functions, we have

q̃(y) = q̂(y) − 2γ
|y|2 ≤ c2q̂(x) − 2γ

|y|2 = −c2 −
ˆ

∂B(x,4)

Δudσ − 2γ
|y|2

= −c2 −
ˆ

∂B(x,4)

Δũdσ + c2 −
ˆ

∂B(x,4)

2γ
|y|2 dσ − 2γ

|y|2

≤ −c2 −
ˆ

∂B(x,4)

Δũdσ + C, y ∈ B(x, 2),

(2.17)

with constants c2 and C.
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Integrating (2.14) along r, we have

−
ˆ

∂B(x,4)

Δũdσ − Δũ(x) =
rˆ

0

3
π2s3

sˆ

0

ˆ

∂B(x,t)

e4ũdσdtds

=
rˆ

0

3
π2s3

sˆ

0

t3
ˆ

∂B(x,1)

e4ũdσdtds

=
rˆ

0

t3
ˆ

∂B(x,1)

e4ũ
( 3

2π2t2
− 3

2π2r2

)
dσdt.

That is

−
ˆ

∂B(x,4)

Δũdσ − Δũ(x) = 3
2π2

ˆ

B(x,r)

( 1
|x− y|2 − 1

r2

)
e4ũdy. (2.18)

Next by Lemma 2.2 and (2.18), we can see

− −
ˆ

∂B(x,4)

Δũdσ = −Δũ(x) − 3
2π2

ˆ

B(x,r)

1
|x− y|2 e

4ũdy + 3
2π2r2

ˆ

B(x,r)

e4ũdy

= − Δu(x) − 3
2π2

ˆ

B(x,r)

1
|x− y|2 e

4ũdy + 3
2π2r2

ˆ

B(x,r)

e4ũdy − 2γ
|x|2

= 3
2π2r2

ˆ

|x−y|≥r

1
|x− y|2 e

4ũdy + 3
2π2r2

ˆ

B(x,r)

e4ũdy − 2γ
|x|2 + C1.

In particular, for r = 4 and |x| large,

− −
ˆ

∂B(x,4)

Δũdσ ≤ c3. (2.19)

Hence, from (2.17), we get

q̃(y) ≤ c4, y ∈ B(x, 2), (2.20)

and immediately

|q̃(y)| ≤ c5, y ∈ B(x, 2).
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Since q satisfies
{

Δq(y) = −q̃(y), in B(x, 4),
q(y) = ũ(y), on ∂B(x, 4),

by estimates for linear elliptic equations, we have for any p > 1 and σ > 2,

sup
B(x,1)

q ≤ c
(
‖ q+ ‖Lp(B(x,2)) + ‖ q̃ ‖Lσ(B(x,2))

)
, (2.21)

where c = c(p, σ).
On the other hand, we observe that q+(y) ≤ ũ+(y) + |h(y)| for y ∈ B(x, 4). Then by 

(2.16), we get

ˆ

B(x,2)

(q+)p ≤ c6

ˆ

B(x,2)

e2q+ ≤ c5

( ˆ

B(x,2)

e4ũ+
) 1

2
( ˆ

B(x,2)

e4|h|
) 1

2 ≤ c7

( ˆ

B(x,2)

e4ũ+
) 1

2

Since e4ũ+ ≤ 1 +e4ũ, we have ‖ q+ ‖Lp(B(x,2))≤ c7, which together with (2.20) and (2.21)
implies

sup
B(x,1)

q ≤ c8. (2.22)

In view of ũ = h + q, we now obtain

ũ(y) ≤ h(y) + q(y) ≤ c8 + |h(y)|, y ∈ B(x, 2). (2.23)

Therefore,
ˆ

B(x,1)

e24ũ ≤ c9

ˆ

B(x,1)

e24|h|dy ≤ c10. (2.24)

Then
∣∣∣ ˆ

B(x,1)

(log |x− y|)e4ũdy
∣∣∣ ≤ ( ˆ

B(x,1)

(log |x− y|)2dy
) 1

2
( ˆ

B(x,1)

e8ũ(y)dy
) 1

2 ≤ c11,

which means ∣∣∣ ˆ

B(x,1)

(log |x− y|)|y|4γe4u(y)dy
∣∣∣ ≤ c11, (2.25)

where c11 is a constant independent of x (|x| large). As a consequence, (2.8) and (2.25)
lead to
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v(x) ≥ (α− ε

2) log |x| − c11 ≥ (α− ε) log |x|

for |x| large, which is (2.7). �
With the estimates of v(x) near infinity and the expression of Δu, we can show the 

expression of u in integral form under the condition |u(x)| = o(|x|2) at ∞:

Lemma 2.4. Suppose |u(x)| = o(|x|2) at ∞. Then there exists a constant C0 such that

u(x) = 3
4π2

ˆ

R4

log
( |y|
|x− y|

)
|y|4γe4u(y)dy + C0. (2.26)

Furthermore, for any given ε > 0,

−α log |x| − C ≤ u(x) ≤ (−α + ε) log |x|, |x| ≥ R(ε), (2.27)

where R(ε) comes from Lemma 2.3.

Proof. We start from the integral expression of Δu in Lemma 2.2:

Δu(x) = − 3
2π2

ˆ

R4

1
|x− y|2 |y|

4γe4u(y)dy − C1, C1 ≥ 0,

and we first prove C1 = 0 by contradiction. If C1 > 0 we have

Δu(x) ≤ −C1 < 0, |x| ≥ R0,

where R0 is large. Let

h(y) = u(y) + ε|y|2 + A
(
|y|−2 −R−2

0
)
. (2.28)

Under the assumption of |u(y)| = o(|y|2) at ∞, we have lim
|y|→+∞

h(y) = +∞ for any fixed 

ε > 0 and A > 0. So we choose ε > 0 small to make

Δh(y) = Δu(y) + 8ε < −C1

2 < 0, |y| ≥ R0, (2.29)

and A sufficiently large such that inf
|y|≥R0

h(y) is achieved by some y0 ∈ R4 and |y0| > R0. 

Clearly we have obtained a contradiction to the maximum principle. Hence, C1 = 0 and 
u + v is harmonic in R4.

From Lemma 2.1 and Lemma 2.3, we know for |x| large enough

(α− ε) log |x| ≤ v(x) ≤ α log |x| + C,
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which together with the assumption |u(x)| = o(|x|2) at ∞ indicates

|u(x) + v(x)| = o(|x|2) at ∞. (2.30)

Since u + v is harmonic, we have

u(x) + v(x) =
4∑

j=1
ajxj + a0

with some constants aj ∈ R, j = 0, · · · , 4. Therefore, for |x| large enough, we get

e4u(x) = ea0e−4v(x)e
∑4

j=1 ajxj ≥ C|x|−4αe
∑4

j=1 ajxj .

Since |y|4γe4u(x) ∈ L1(R4), we have aj = 0 for 1 ≤ j ≤ 4. Therefore,

u(x) = −v(x) + a0 = 3
4π2

ˆ

R4

log
( |y|
|x− y|

)
|y|4γe4u(y)dy + C0,

and then

−α log |x| − C ≤ u(x) ≤ (−α + ε) log |x|,

for |x| large. Lemma 2.4 is established. �
Next we need a Pohozaev identity for u of

Δ2u = Q(x)e4u in R4. (2.31)

Lemma 2.5. Suppose u is an entire smooth solution of (2.31). Then for any bounded 
domain, we have

ˆ

Ω

(
Qe4u + 1

4 < x,∇Q > e4u)dx
=1

4

ˆ

∂Ω

< x, ν > Q(x)e4udσ +
ˆ

∂Ω

{1
2 |Δu|2 < x, ν > −2∂u

∂ν
Δu

− < x,∇u >
∂Δu

∂ν
− < x,∇Δu >

∂u

∂ν
+ < x, ν >< ∇u,∇Δu >

}
dσ.

(2.32)

In particular, taking Ω = BR, we have
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ˆ

BR

Q(x)e4udx + 1
4

ˆ

BR

< x,∇Q > e4udx

=1
4

ˆ

∂BR

|x|Qe4udσ + 1
2

ˆ

∂BR

|x||Δu|2dσ − 2
ˆ

∂BR

∂u

∂r
Δudσ −

ˆ

∂BR

|x|∂u
∂r

∂Δu

∂r
dσ.

(2.33)

Proof. Multiplying (2.31) by x · ∇u, we have
ˆ

Ω

Δ2u(x · ∇u) =
ˆ

Ω

Q(x)e4u(x · ∇u). (2.34)

After integrating by parts and direct computation, we get

(RHS) of (2.34) = 1
4

ˆ

∂Ω

< x, ν > Q(x)e4udσ −
ˆ

Ω

(
Qe4u + 1

4 < x,∇Q > e4u)dx,
and

(LHS) of (2.34) = − 1
2

ˆ

∂Ω

|Δu|2 < x, ν > +2
ˆ

∂Ω

∂u

∂ν
Δu +

ˆ

∂Ω

< x,∇u >
∂Δu

∂ν

+
ˆ

∂Ω

< x,∇Δu >
∂u

∂ν
−
ˆ

∂Ω

< x, ν >< ∇u,∇Δu > .

Thus we establish (2.32). Taking Ω = BR, we immediately obtain (2.33) from (2.32). 
Note that the singularity at the origin is insignificant that contributes nothing to the 
final form of the Pohozaev identity. �

From the Pohozaev identity we shall determine the exact value of α.

Lemma 2.6. Let u be a solution of (1.12). Assume |u(x)| = o(|x|2) at ∞, then α =
2(1 + γ).

Proof. Taking Q(x) = 6|x|4γ in (2.33), we have

6(1 + γ)
ˆ

BR

|x|4γe4udx

=1
4

ˆ

∂BR

6r4γ+1e4udσ + 1
2

ˆ

∂BR

r|Δu|2 − 2
ˆ

∂BR

∂u

∂r
Δu−

ˆ

∂BR

r
∂u

∂r

∂Δu

∂r
.

(2.35)

In view of Lemma 2.4, we have obtained

u(x) = 3
4π2

ˆ
log

( |y|
|x− y|

)
|y|4γe4u(y)dy + C0,
R4
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and eu(y) ≥ |y|−4α for |y| large enough. Then |y|4γe4u(y) ≥ |y|4(γ−α). Hence |y|4γe4u(y) ∈
L1(R4) implies α > 1 + γ. On the other hand, by the representation of u and direct 
calculations, there hold

∂u

∂r
(x) = − 3

4π2

ˆ

R4

x · (x− y)
|x||x− y|2 |y|

4γe4u(y)dy,

Δu(x) = − 3
2π2

ˆ

R4

1
|x− y|2 |y|

4γe4u(y)dy,

and

∂

∂r
Δu(x) = 3

π2

ˆ

R4

x · (x− y)
|x||x− y|4 |y|

4γe4u(y)dy.

Recall the definition of u, Lemma 2.4 and α > 1 + γ, then we have

lim
r→+∞

∂u

∂r
= 0, lim

r→+∞
r
∂u

∂r
= −α,

lim
r→+∞

r2Δu = −2α, lim
r→+∞

r3 ∂

∂r
Δu = 4α,

(2.36)

where r = |x|. Therefore, applying the Pohozaev identity (2.35) and (2.36), we have

8π2(1 + γ)α = 4π2α2,

which leads to α = 2(1 + γ). �
Now we can determine the asymptotic behavior of u at infinity using the exact value 

of α.

Lemma 2.7. Let u be a solution of (1.12) and suppose |u(x)| = o(|x|2) at ∞. Then there 
exist c0 ∈ R, τ > 0 such that for |x| > 1,

u(x) = −2(1 + γ) log |x| + c0 + O(|x|−τ ), |x| > 1 (2.37)

and

∇j(u(x) + 2(1 + γ) log |x|) = O(|x|−τ−j), j = 1, 2, 3, 4, |x| > 1. (2.38)

In particular

−Δu(x) = 4(1 + γ)
2 + O(|x|−2−τ ), |x| > 1. (2.39)
|x|
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Proof. Let w(x) = u( x
|x|2 ) −2(1 +γ) log |x|, then from the equation of u and the assump-

tion, we see w satisfies

{
Δ2w(x) = 6|x|4γe4w(x), in R4 \ {0},
|w(x)| = o(log 1

|x| ), |Δw(x)| = o( 1
|x|2 ), as |x| → 0. (2.40)

Let h(x) be a solution of

{
Δ2h(x) = 6|x|4γe4w(x), in B1 \ {0},
h(x) = w(x), Δh(x) = Δw(x), on ∂B1,

(2.41)

and q(x) = w(x) − h(x). Then q(x) satisfies

⎧⎪⎨
⎪⎩

Δ2q(x) = 0, in B1,

q(x) = Δq = 0, on ∂B1,

|q(x)| = o(log 1
|x| ), |Δq(x)| = o( 1

|x|2 ), as |x| → 0.
(2.42)

First for Δq, since its growth near the singular source is weaker than fundamental solu-
tions, the singularity is removable, thus Δq = 0 in B1. By exactly the same reason we 
further conclude that q ≡ 0 in B1. That means w(x) = h(x) ∈ C0,τ (B̄1). It suffices to 
consider the regularity of h in B1.

Note that

|x|4γe4w(x) = |x|4γe4u( x
|x|2 )−8(1+γ) log |x|

∼ |x|4γ |x|−8(1+γ)|x|4α ∼ |x|4γ , near 0,

where we used Lemma 2.4 and Lemma 2.6.
By standard elliptic estimate, if γ > −3

4 , w ∈ C1,τ for some τ > 0, if −1 < γ ≤ −3
4

we have w ∈ C0,τ1 for τ1 < 4(1 + γ). So in either case we use τ ∈ (0, 1) to have the 
following expansion of u:

u(x) = −2(1 + γ) log |x| + c0 + O(|x|−τ ), |x| > 1.

Based on this we can use standard elliptic estimate to obtain corresponding gradient 
estimates: now |x|4γe4u can be written as

|x|4γe4u = ec0r−8−4γ + O(r−8−4γ−τ ), r = |x| > 1 (2.43)

Using this in the expression of u(x) in (2.26) and −Δu in (2.5) it is easy to obtain 
(2.39) for Δu. Then the asymptotic behavior for other derivatives in (2.38) is a direct 
consequence of standard elliptic estimates. �
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Remark 2.8. It is important to observe from (2.38) that for r large,

∂r(u(x) + γ log |x|) = −2 + γ

r
+ O(r−1−τ ), r = |x|,

thus the function |x|4γe4u(x) is strictly decreasing in r = |x| for r large.

2.2. Classification of entire solutions for the case −1 < γ < 0

In this subsection, we will show the solution of (2.14) or (1.12) has radial symmetry 
and uniqueness property up to scaling if −1 < γ < 0. Similar to [28], we will use the 
method of moving planes. But the situation for singular equation is a lot harder since it is 
difficult to obtain precise asymptotic behavior of u without knowing its radial symmetry. 
In this proof the integral expressions of u and Δu play a crucial role.

Suppose that u is a smooth entire solution of (1.12) with |u(x)| = o(|x|2) at ∞. Recall 
−Δu > 0 in R4 and (2.37)∼(2.38), so we will apply the method of moving planes to 
−Δu. Let v(x) = −Δu(x). Then by Lemma 2.7,

v(x) = 4(1 + γ)
|x|2 + O(|x|−2−τ ), |x| > 1. (2.44)

First, we state some conventional notations for moving planes. For any λ ∈ R, let 
Tλ = {x ∈ R4 : x1 = λ}, Σλ = {x : x1 > λ} and xλ = (2λ − x1, x2, x3, x4) be the 
reflection point of x with respect to Tλ.

Proof of Theorem 1.3. Lemma 2.6 establishes (i) in Theorem 1.3. Next we aim to prove 
the radial symmetry of solutions by the method of moving planes.

Step 1: We start moving planes along x1-direction. For any λ, we consider wλ(x) =
u(x) − u(xλ) in Σλ. Then wλ(x) satisfies

{
Δ2wλ(x) = bλ(x)wλ(x), in Σλ,

wλ(x) = Δwλ(x) = 0, on ∂Tλ,
(2.45)

where

bλ(x) = 6 |x|
4γe4u(x) − |xλ|4γe4u(xλ)

u(x) − u(xλ) .

First we claim that there exists λ0 < 0 such that wλ0 > 0 and v(x) − vλ0(x) > 0 in 
Σλ0 . Using the expression of u in (2.26) we can obviously write u(x) − uλ(x) as

u(x) − uλ(x) = 3
4π2

ˆ
4

log |xλ − y|
|x− y| |y|

4γe4u(y)dy =
ˆ

+
ˆ

4

, (2.46)

R Σλ R \Σλ
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where uλ(x) = u(xλ). Changing the integration over R4 \ Σλ to Σλ by a change of 
variable: z = (z1, z2, z3, z4) = (2λ − y1, y2, y3, y4) we see that

u(x) − uλ(x) = 3
4π2

ˆ

Σλ

log |xλ − y|
|x− y| (|y|4γe4u(y) − |yλ|4γe4u(yλ))dy. (2.47)

Here we remark that writing wλ in the form of (2.47) is crucial for our argument, it 
prevents us from very delicate asymptotic analysis for u and its derivatives. From (2.47)
we claim that when λ is very negative and when x ∈ Σλ, u −uλ > 0 in Σλ. Indeed, first it 
is obvious that log(|xλ−y|/|x −y|) > 0. Next we observe the integration of y over BR and 
outside BR, respectively. For integration over BR, we clearly have |y|4γe4u > c0 > 0 for 
some c0 > 0. Based on the asymptotic behavior of u we can easily make |yλ|4γe4u(yλ) < c0
for λ very negative. For y ∈ Σλ \BR, by Remark 2.8 we have

|y|4γe4u(y) > |yλ|4γe4u(yλ) because |yλ| > |y|.

We also observe that for v = −Δu,

v(x) − vλ(x) = 3
2π2

ˆ

R4

( 1
|x− y|2 − 1

|xλ − y|2 )|y|4γe4u(y)dy.

After a similar transformation we have

v(x) − vλ(x) = 3
2π2

ˆ

Σλ

( 1
|x− y|2 − 1

|xλ − y|2 )(|y|4γe4u(y) − |yλ|4γe4u(yλ))dy.

By exactly the same reasoning we see that for λ very negative, v(x) > vλ(x) in Σλ.
Let λ0 be the starting position for the moving plane process and let λ̄ ≤ 0 be the 

upper limit:

λ̄ := sup
{
λ ≤ 0 : v(xμ) < v(x) for all x ∈ Σμ and μ ≤ λ

}
. (2.48)

Next we claim that λ̄ = 0. If this is not the case, we have λ̄ < 0. From the equation for 
wλ̄:

Δ2wλ̄(x) = 6|xλ̄|4γ(e4u(x) − e4uλ̄(x)) + 6(|x|4γ − |xλ̄|4γ)e4u(x), x ∈ Σλ̄. (2.49)

We see that on one hand the continuity gives Δwλ̄(x) ≤ 0, since wλ̄ → 0 as |x| → +∞
and wλ̄

∣∣
Tλ̄

= 0. On the other hand we have |xλ̄| > |x|. This strict inequality and the 
strong maximum principle combined gives

wλ̄(x) > 0, Δwλ̄(x) < 0, in Σλ̄.
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Then we claim that for ε > 0 small we still have

v(xμ) < v(x), for all x ∈ Σμ and μ ≤ λ̄ + ε. (2.50)

Clearly once (2.50) is verified, we obtain a contradiction to the definition of λ̄. To prove 
(2.50) we first make a trivial observation: For any fixed R >> 1, Hopf lemma and wλ̄ > 0
in Σλ̄ ∩BR means that if λ is slightly greater than λ̄, we still have wλ > 0 in Σλ ∩BR. 
Thus we only consider |x| > R. We use two different expressions of wλ: One is (2.46), 
which will be used for crude estimate, the other one is based on (2.47):

wλ(x) = 3
4π2

ˆ

Σλ

log |xλ − y|
|x− y|

(
|y|4γ(e4u − e4uλ) + (|y|4γ − |yλ|4γ)e4u

)
dy. (2.51)

Similarly for v − vλ we have

v(x) − vλ(x) (2.52)

= 3
2π2

ˆ

Σλ

( 1
|x− y|2 − 1

|xλ − y|2 )
(
|y|4γ(e4u − e4uλ) + (|y|4γ − |yλ|4γ)e4u

)
dy.

Here it is important to point out that since λ̄ < 0, a perturbation of ε still satisfies 
λ̄+ ε < 0. Writing wλ = w+

λ −w−
λ , our goal is to prove that w−

λ ≡ 0 for λ slightly greater 
than λ̄. We claim that there exist ε, C > 0 such that

w−
λ (x) ≤ C|x|−1−ε, for |x| > 1 (2.53)

The proof of (2.53) is by iteration. Note that w−
λ (x) = 0 when |x| < R. First using 

(2.46) we have

wλ(x) = 3
8π2

ˆ

R4

log(1 + |xλ − y|2 − |x− y|2
|x− y|2 )|y|4γe4udy =

ˆ

E1

+
ˆ

E2

+
ˆ

E3

,

where E1 = B(0, |x|/2), E2 = B(x, |x|/2) and E3 = R4 \ (E1 ∪E2). The estimate on E1
is

|
ˆ

E1

| ≤ 3
8π2

ˆ

E1

| log(1 + 4(y1 − λ)(x1 − λ)
|x− y|2 )|y|4γe4u|dy.

Since |x − y| ∼ |x| it is easy to obtain an upper bound of O(|x|−4μ). The integration on 
E2 and E3 has an upper bound O(|x|−4μ+ε). Thus

w−
λ (x) ≤ C|x|−4μ+ε. (2.54)
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Using (2.54) in (2.51) we have

wλ(x) ≥ − 3
4π2

ˆ

Σλ

log |xλ − y|
|x− y| 4|y|4γe4ξw−

λ (y)dy,

where ξ comes from the mean value theorem. For each x satisfying wλ(x) ≤ 0, we obtain 
from standard estimates that

w−
λ (x) ≤ C|x|−8μ+ε.

After finite steps we have (2.53).
Now we use (2.53) to evaluate v − vλ:

v(x) − vλ(x)

≥ 3
2π2

ˆ

Σλ

( 1
|x− y|2 − 1

|xλ − y|2 )(4|y|4γe4ξw−
λ (y) + (|y|4γ − |yλ|4γ)e4u.

= 6
2π2

ˆ

Σλ

(y1 − λ)(x1 − λ)
|x− y|2|xλ − y|2 (4|y|4γe4ξw−

λ (y) + (|y|4γ − |yλ|4γ))e4udy.

Note that |y|4γ − |yλ|4γ > 0 in Σλ and e4u > c in Σλ ∩ BR for some positive c. After 
integrating the second term, which is positive, we have

v(x) − vλ(x) ≥ − 6
π2

ˆ

Σλ

( (y1 − λ)(x1 − λ)
|x− y|2|xλ − y|2 )4|y|4γe4ξw−

λ (y))dy + c0(x1 − λ)|x|−4

for |x| large. Then using (2.53) in the evaluation of the first term we see that v − vλ
is positive even for λ slightly larger than λ̄. This is certainly a contradiction to the 
definition of λ̄. Thus we have proved that λ̄ = 0, which means u(x) ≥ u(xλ) in the 
x1 direction. Applying the moving plane method to all directions we obtain the radial 
symmetry of u.

Step 2: Now we prove the uniqueness of the solution of (1.12) modulus scaling in (1.13). 
Let w1 and w2 be two radial solutions of (1.12) satisfying w1(0) = w2(0). Our goal is 
w1 ≡ w2. First we make a remark about the smoothness of w1−w2. Indeed, by Lemma 1
we can find some large β such that eβwi is integrable, which together with γ > −1
implies that the right hand side is Lp1 for some p1 = 1 + ε1 > 1. Therefore, Δwi ∈ Lq1

for q1 = 2p1
2−p1

> 2. By Sobolev embedding theorems we obtain the regularity of wi: 
wi ∈ C0,2− 4

q1 if q1 < 4, and wi ∈ C1,1− 4
q1 if q1 ≥ 4. Thus if we denote α1 = 2 − 4

q1
= 4 − 4

p1
, 

we have

(w1 − w2)(x) = O(|x|α1). (2.55)
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The equation of w1 − w2 reads

Δ2(w1 − w2) = 6|x|4γ(e4w1 − e4w2) = 24|x|4γe4ξ(w1 − w2)

where ξ comes from the mean value theorem. If γ > 1
p1

− 1, which means 4γ + α1 > 0, 
we can choose some q > 2 such that the right hand side is Lq. By elliptic estimates, we 
obtain that w1 −w2 ∈ W 4,q ⊂ C2. Otherwise when −1 < γ ≤ 1

p1
− 1, by using the same 

method, we know the right hand side of this equation is Lp2 integrable near the origin 
for some p2 in

p1 < p2 <
1

1
p1

− (1 + γ)
, if 1

p1
> 1 + γ. (2.56)

(2.56) leads to a better regularity of (w1−w2)(x) = O(|x|α2) for some α2 = 4 − 4
p2

> α1. 
Obviously this boot-strap argument leads to {pk} and {αk} such that if |x|4γe4ξ(w1 −
w2) ∈ Lpk then (w1 − w2)(x) = O(|x|αk). Moreover, pk+1 > pk and αk = 4 − 4

pk
. 

For given γ > −1, we can obtain some pk0 such that 1 + γ − 1
pk0

> 0 after finite 
steps. Therefore, we can find some q > 2 such that the right hand side is Lq, which 
means w1 − w2 ∈ W 4,q ⊂ C2 as well. Note that since wi are radial, we certainly have 
(w1 −w2)′(0) = 0. By the uniqueness of ODE, we only need to prove (w1 −w2)′′(0) = 0.

If (w1 −w2)′′(0) < 0, w1(r) < w2(r) for small r > 0. We will prove w1(r) < w2(r) for 
all r > 0. Suppose there exists r0 > 0 such that w1(r0) = w2(r0) and w1(r) < w2(r) for 
0 < r < r0. Then by (1.12), we have

∂

∂r
Δ(w1(r) − w2(r)) = 6r4γ(e4w1(r) − e4w2(r)

)
< 0, 0 < r ≤ r0,

which together with the assumption implies

Δ(w1 − w2) < 0, in B(0, r0).

Since w1(r0) − w2(r0) = 0, from the maximum principle, we have w1(r) − w2(r) > 0 for 
0 < r < r0, which contradicts with w1(0) = w2(0). Thus, w1(r) < w2(r) for all r > 0. 
Hence ∂

∂rΔ(w1(r) −w2(r)) < 0 for all r > 0, which means Δ(w1(r) −w2(r)) is decreasing 
in r. Thus w1(r) − w2(r) ≤ −cr2 as r → +∞ for some constant c > 0, which yields a 
contradiction to the assumption wi(r) = o(r2) at ∞.

Similarly, it is impossible for (w1 −w2)′′(0) > 0. Thus, the radial solution of (1.12) is 
unique under the scaling uλ(x) = u(λx) +(1 + γ) log λ for some λ > 0, and it is valid for 
(2.14) after scaling. �
Proof of Corollary 1.4. First we use the rough expansion of u in (2.37) to rewrite |x|4γe4u

as

r4γe4u = e4c0r−4−4μ + O(r−4−4μ−τ ), r > 1, for some τ > 0.
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Here we use μ = 1 + γ > 0 for convenience. Then for v = −Δu, we have (see (2.39))

lim
r→∞

v′(r)r3 = −8μ.

The equation for v can be written as

v′′(r) + 3
r
v′(r) = 6e4c0r−4−4μ + O(r−4−4μ−τ ), r > 1.

Multiplying r3 to both sides and integrating from r to ∞, we have

r3v′(r) + 8μ = −6e4c0

4μ r−4μ + O(r−4μ−τ ), r > 1.

Thus

v′(r) = −8μ
r3 − 3e4c0

2μ r−3−4μ + O(r−3−4μ−τ ), r > 1

and

v(r) = 4μ
r2 + 3e4c0

2μ(2 + 4μ)r
−2−4μ + O(r−2−4μ−τ ), r > 1,

where limr→∞ v(r) = 0 is used. Multiplying the expression of v, which is −u′′ − 3
ru

′, we 
have

(r3u′)′(r) = −4μr − 3e4c0

2μ(2 + 4μ)r
1−4μ + E, (2.57)

where E = O(r1−4μ−τ ). Here we discuss under two cases, either γ > −3
4 (which is μ > 1

4 ) 
or μ ≤ 1

4 . In the first case M = [ 1
4μ ] = 0, so our goal is to prove

u(r) = −2μ log r + c0 + O(|x|−1), |x| > 1. (2.58)

Integrating (2.57) from 1 to r, we have

u′(r) = c

r3 − 2μ
r

+ 1
r3

rˆ

1

E(s)ds,

where c is a constant. Integrating the above again from 1 to r we obtain (2.58). Now we 
consider the case μ ≤ 1

4 . In this case we use the fact that τ = 4μ − ε. Integration from 1
to r we have

u(r) = −2μ log r + c0 + c1r
−4μ + O(r−8μ+ε) + O(r−1), r > 1 (2.59)
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where

c1 = 3e4c0

32μ2(1 + 2μ)(1 − 2μ) .

Thus if μ > 1
8 the expansion has an error term O(r−1) and is finished (here we also note 

that in this case M = [ 1
4μ ] = 1). So we only need to consider the case μ ≤ 1

8 . Now (2.59)
has improved the estimate of r4γe4u to

r4γe4u = e4c0r−4μ−4 + e4(c0+c1)r−4−8μ + O(r−4−12μ+ε), r > 1. (2.60)

Using (2.60) in computation we obtain

u(r) = −2μ log r + c0 + c1r
−4μ + c2r

−8μ + O(r−12μ+ε) + O(r−1), r > 1

where

c2 = 3e4(c0+c1)

128μ2(1 + 4μ)(1 − 4μ) .

This expression further improves the estimate of r4γe4u. In general

cl = 3e4(c0+...+cl−1)

32l2μ2(1 − 2lμ)(1 + 2lμ) .

Obviously this process can be finished in finite steps as μ > 0. Finally the expansions of 
Δu as well as other derivatives can be obtained in standard argument. Corollary 1.4 is 
established. �

Next, we consider the case without the assumption |u(x)| = o(|x|2) at ∞.
The following lemma is similar to Lemma 3.3 in [28].

Lemma 2.9. Suppose that Δu = a in Rn for a constant a ∈ R such that exp(u − c|x|2) ∈
L1(Rn) for some c > 0. Then u is a polynomial of order at most 2.

Proof. Let P be a parabola that satisfies ΔP = a. Then u − P is a harmonic function, 
which also satisfies exp(u − P − c|x|2) ∈ L1(Rn) for some c > 0 obviously. Thus Lemma 
3.3 in [28] asserts that u − P is a parabola, so is u. �

If the o(|x|2) assumption is removed, we have the following result:

Theorem 2.10. Let u be a solution of (1.12) with γ > −1. Then after an orthogonal 
transformation, u(x) can be represented by (1.16), which has an asymptotic expansion 
of
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u(x) = −2(1 + γ) log |x| −
4∑

j=1
aj(xj − x0

j)2 + c0 + O(|x|−τ ), |x| > 1

for some τ > 0. The function Δu satisfies

Δu(x) = − 3
2π2

ˆ

R4

1
|x− y|2 |y|

4γe4u(y)dy − 2
4∑

j=1
aj , |x| > 1 (2.61)

where aj are nonnegative constants and x0 = (x0
1, · · · , x0

4) ∈ R4. Moreover, if −1 < γ <

0, aix0
i = 0 for all i = 1, · · · , 4 and a1 = a2 = a3 = a4, u is radially symmetric.

Proof of Theorem 2.10. Suppose that u is a solution of (1.12). Let v be defined as in (2.1)
and w(x) = u(x) + v(x). By Lemma 2.2, we have Δw(x) ≡ −C1 ≤ 0 in R4. Since v has 
only logarithmic growth at infinity, the integrability of u guarantees that the assumption 
of Lemma 2.9 is satisfied. Thus there exist constants c0 and aij (i, j = 1, · · · , 4) such 
that aij = aji and

w(x) =
4∑

i,j,k=1

(aijxixj + bkxk) + c0.

After an orthogonal transformation, we may assume

u(x) = 3
4π2

ˆ

R4

log
( |y|
|x− y|

)
|y|4γe4u(y)dy −

4∑
j=1

(ajx2
j + bjxj) + c0.

Since |x|4γe4u ∈ L1(R4), we have aj ≥ 0 for all j = 1, · · · , 4, and bj = 0 if aj = 0. Hence, 
we can rewrite u(x) as follows:

u(x) = 3
4π2

ˆ

R4

log
( |y|
|x− y|

)
|y|4γe4u(y)dy −

4∑
j=1

aj(xj − x0
j)2 + c0

and (2.61) holds from the previous argument.
Next, we show the radial symmetry under the assumption aix0

i = 0 for all i and 
a1 = a2 = a3 = a4. Clearly in this case

u(x) = 3
4π2

ˆ

R4

log
( |y|
|x− y|

)
|y|4γe4u(y)dy −

4∑
j=1

ajx
2
j + c0

Let û(x) = u(x) +
∑4

j=1 ajx
2
j . Then

Δ2û(x) = 6|x|4γe−4
∑4

j=1 ajx
2
j e4û(x), in R4. (2.62)
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As in Lemma 2.7, we set ŵ(x) = û( x
|x|2 ) − α log |x|, then |ŵ(x)| = o(log 1

|x| ) near 0 from 
Lemma 2.1 and Lemma 2.3, and ŵ satisfies

Δ2ŵ(x) = 6|x|4γe−4
∑4

j=1 aj(
xj

|x|2 )2
e4ŵ(x), in R4 \ {0}. (2.63)

Note that aj ≥ 0, then we can follow the argument in the proof of Lemma 2.7 to obtain 
for |x| large and a τ ∈ (0, 1) such that

û(x) = −α log |x| + c0 + O(|x|−τ ), (2.64)

and {
−Δû(x) = 2α

|x|2 + O(|x|−2−τ ),
− ∂

∂xi
Δû(x) = −4α xi

|x|4 + O(|x|−3−τ ).
(2.65)

At this point, we establish (1.16). Note that for ŵλ = û− ûλ, we have the expression as 
in (2.51)

ŵλ(x) = 3
4π2

ˆ

Σλ

log |xλ − y|
|x− y|

(
|y|4γe−4

∑4
j=1 ajy

2
j (e4u − e4uλ)

+ (|y|4γe−4
∑4

j=1 ajx
2
j − |yλ|4γe−4

∑4
j=1 aj(yλ)2j )e4u

)
dy.

Moreover, for −Δû + Δûλ, we can get similar expression as in (2.52). Since aj ≤ 0
and γ < 0, we have |y|4γe−4

∑4
j=1 ajy

2
j ≥ |yλ|4γe−4

∑4
j=1 aj(yλ)2j in Σλ, where we use the 

fact λ ≤ 0. Consequently, we can apply the method of moving planes as in the proof of 
Theorem 1.3 to show that û(x) is symmetric with respect to the origin. �
3. Preliminaries for blowup analysis

Let G : M ×M \ diag denote the Green’s function for the Paneitz operator

f(x) − f̄ =
ˆ

M

G(x, y)Pgf(y)dVg(y),
ˆ

M

G(x, y)dVg(y) = 0, (3.1)

where f̄ = 1
volg(M)

´
M

fdVg is the average of f over M . Then the weak form of (3.1) is

Pg,yG(x, y) = δx − 1
volg(M) . (3.2)

Set R be the regular part of the Green function. Then by the Appendix A in [44], for 
y in a neighborhood of x,
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G(x, y) = − 1
8π2 log dg(x, y)χ + R(x, y), (3.3)

where χ is a cut-off function to avoid cut locus. Using G we can decompose uk as the 
sum of its regular part and singular part

uk(x) = ũk(x) − 8π2
N∑
j=1

γjG(x, qj). (3.4)

Then ũk satisfies

Pgũk + 2bk = 2Hke
4ũk in M, (3.5)

where

Hk(x) = hk(x)
N∏
j=1

e−32π2γjG(x,qj). (3.6)

Clearly, (1.9) and (1.11) imply that
ˆ

M

Hke
4ũkdVg ≤ C (3.7)

We will work with ũk in the later blow-up analysis.
Similar with [44], since the metric g may not be locally conformally flat, we will 

apply the conformal normal coordinates, whose existence has been proved in [26]. More 
specially, for q ∈ M , there exists a normal coordinate around q such that g can be 
deformed to g which satisfies det (g) = 1. We use Rijkl to denote the curvature tensor 
under g.

We will apply the expansions of the metric g and its derivatives in the conformal 
normal coordinates (seen in the Appendix B of [44]), which are

gab(x) = δab + 1
3Raijbx

ixj + O(r3),

gab(x) = δab −
1
3Raijbx

ixj + O(r3),

∂cg
ab(x) = −1

3(Racib + Raicb)xi + O(r2),

∂abg
ab(x) = 1

3Ria,ax
i + O(r2).

(3.8)

In addition, the following Pohozaev identity from the Appendix D in [44] will play 
an important role when the blow-up analysis is carried out in the conformal normal 
coordinates.
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Lemma 2. [44]
For equation Pgu + 2b = 2he4u in M and Ω = B(0, r), there holds
ˆ

Ω

(
2he4u + 1

2x
i∂ihe

4u
)

=
ˆ

∂Ω

(1
2x

iνihe
4u − xkνjg

ij∂i(Δgu)∂ku + νjg
ijΔgu∂iu + xkνjg

ijΔgu∂iku− 1
2x

iνi(Δgu)2
)

+
ˆ

Ω

(
Δgu∂ig

ij∂ju + xkΔgu∂ikg
ij∂ju + xkΔgu∂kg

ij∂iju− 2bxi∂iu
)

+ 2
ˆ

∂Ω

(
Rij,l(q)xlxkνi∂ju∂ku + O(r3)|∇u|2

)

−
ˆ

Ω

(
2Rij,l(q)

(
xl∂ju∂iu + xkxl∂ju∂iku

)
+ O(r2)|∇u|2 + O(r4)|∇2u|

)
(3.9)

Note that we use B(p, r) to denote a ball centered at p with radius r. Sometimes if 
the center is the origin, we use Br instead of B(0, r).

4. Blow-up analysis near the singularity

In this section, we focus on the blow-up analysis near qj, and to simplify the notation, 
we will omit the subscript j. Similar to the argument in [44], we will work in the conformal 
normal coordinates near q from [26]. To be specific, we can find some function w defined 
on M , such that in a small neighborhood B(q, δ) of q, δ > 0, we have

det (ĝ) = 1 (4.1)

in the normal coordinates of the conformal metric ĝ = e2wg. For convenience we just use 
g instead of ĝ. Note that in a neighborhood of q,

w(x) = O(dg(x, q)2), (4.2)

where dg(x, q) stands for the distance between x and q under metric g.
Using the conformal covariance property of Pg the function uk = ũk − w satisfies

Pguk + 2bk = 2Hke
4uk , (4.3)

and
ˆ

Hke
4ukdVg ≤ C, (4.4)
M
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where 2bk = Pgw + 2bk and H̃k = Hke
4w. For simplicity, we still denote H̃k by Hk.

We still use G to denote the Green’s function for Pg. Then we have the following 
Green’s representation formula

uk(x) = ūk + 2
ˆ

M

G(x, y)Hk(y)e4uk(y)dVg(y) − 2
ˆ

M

G(x, y)bk(y)dVg(y), (4.5)

where ūk is the average of uk over (M, g). Using the expression of G in (3.3), we have

uk(x) = ūk + 2
ˆ

M

(
− 1

8π2 log dg(x, y)χ
)
Hk(y)e4uk(y)dVg(y) + φk(x), (4.6)

where

φk(x) = 2
ˆ

M

R(x, y)Hk(y)e4uk(y)dVg(y) − 2
ˆ

M

G(x, y)bk(y)dVg(y). (4.7)

Note that det (g) = 1 in B(q, δ), we have dVg(y) = dy in B(q, δ). Taking the difference 
of (4.6) evaluated at x and q, we get

uk(x) − uk(q)

= 1
4π2

ˆ

M

(
χ(rq) log |y − q| − χ(rx) log dg(x, y)

)
Hk(y)e4uk(y)dVg(y) + φk(x) − φk(q),

(4.8)

where rq = |y − q| and rx = dg(x, y). Here since the coordinates are normal, we have 
dg(y, q) = |y − q|.

Thanks to the cut-off function χ, we can replace the integral over M by an integral 
over B(q, 2δ):

uk(x) − uk(q)

= 1
4π2

ˆ

B(q,4δ)

(
χ(rq) log |y − q| − χ(rx) log dg(x, y)

)
Hk(y)e4uk(y)dVg(y)

+ φk(x) − φk(q), x ∈ B(q, 2δ).

(4.9)

We next give an upper bound of the mass near q when uk cannot blow up at q. Before 
stating such a small energy lemma we point out that the function Hk can be written in 
the neighborhood of a singular source q as

Hk(x) = hk(x)dg(x, q)4γ , (4.10)

with hk(q) �= 0. Using this notation, our result states as follows:
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Lemma 4.1. Let q be a singular source with index γ. If

lim
k→+∞

ˆ

B(q,2δ)

2hkdg(x, q)4γe4uk(x)dVg < min{8π2, 8π2(1 + γ)}, (4.11)

hk is defined in (4.10). Then uk ≤ C in B(q, δ).

Proof. Note that

Pguk = 2hkdg(x, q)4γe4uk(x) − 2bk.

We write uk = u1k + u2k where u1k is the solution of{
Δ2u1k = 2hkdg(x, q)4γe4uk(x) in B(q, 2δ)
u1k(x) = Δu1k(x) = 0 on ∂B(q, 2δ).

(4.12)

By Lemma 2.3 of [28] we have

ˆ

B(q,2δ)

exp
{ δ̃|u1k|
‖ 2Hke4uk ‖L1(B(q,2δ),g)

}
dVg ≤ C, (4.13)

with any δ̃ ∈ (0, 32π2) and some constant C = C(δ̃, δ). On one hand in B(q, 2δ),

u1k(x) =
ˆ

B(q,δ)

Gδ(x, y)2hkdg(η, q)4γe4ukdη, x ∈ B(q, 2δ) (4.14)

where Gδ(x, y) is the Green’s function of Δ2 on B(q, 2δ):

Gδ(x, y) = − 1
8π2 log |x− y| + Rδ(x, y),

with

Gδ(x, y) = ΔyGδ(x, y) = 0, for x ∈ B(q, 2δ), y ∈ ∂B(q, 2δ).

In particular for x ∈ B(q, 32δ),

u1k(x) = − 1
8π2

ˆ

B(q,2δ)

log |x− q|2hk|η − q|4γe4ukdη + O(1), x ∈ B(q, 3
2δ).

On the other hand the Green’s representation formula of uk gives

uk(x) = u1k(x) + u2k(x) = uk +
ˆ

G(x, η)2hkdg(x, q)4γe4ukdη.

M
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Since the leading term of G and Gδ are both − 1
8π2 log dg(x, q), we have

u2k(x) = uk + O(1).

From 
´
M

e4ukdVg ≤ C and Jensen’s inequality

e4ūk ≤
ˆ

M

e4ukdVg ≤ C.

Therefore, u2k ≤ C in B(q, 32δ). Now we focus on u1k.
If γ ≥ 0, (4.11) is

ˆ

B(q,2δ)

2hkdg(x, q)4γe4uk(x)dVg < 8π2.

Since u2k is bounded from above in B(q, 32δ), we see from (4.13) that there exists some 
p > 1 to make e4u1k ∈ Lp(B(q, 2δ)):

‖ 2hkdg(x, q)4γe4uk(x) ‖Lp(B(q, 32 δ))≤ C. (4.15)

The estimate (4.15) leads to a L∞ bound of u1k in B(q, δ) based on two reasons. First 
the integration of (4.14) gives a L1 bound of u1k in B(q, 32δ):

‖ u1k ‖L1(B(q, 32 δ))≤ C. (4.16)

Second, the standard interior regularity results in [11] (Theorem 1 in Section 3 of [11]) 
gives

‖ u1k ‖W 4,pB(q,δ)≤‖ 2hkdg(x, q)4γe4uk(x) ‖Lp(B(q, 32 δ)) + ‖ u1k ‖L1(B(q, 32 δ))≤ C.

Thus we have obtained the L∞ bound of u1k in B(q, δ) by standard Sobolev embedding 
theorem.

If −1 < γ < 0, (4.11) is
ˆ

B(q,2δ)

2hkdg(x, q)−4|γ|e4uk(x)dVg < 8π2(1 − |γ|).

Since δ̃
8π2(1−|γ|) < 4

1−|γ| , this strict inequality makes it possible to choose δ̃ in (4.13) close 

to 32π2 such that there is a p > 1, p < 1
|γ| and p < δ̃

32π2(1−|γ|) . Then Hölder inequality 
tells us that (4.15) is also true in this case and the L∞ bound of u1k over B(q, δ) follows 
immediately. The combination of the L∞ bound of u1k and the upper bound of u2k
implies that uk ≤ C in B(q, δ). �
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An immediate consequence of Lemma 4.1 is that blowup sequence only converges to 
point measures. The following theorem takes one step further to assert that the point 
measure is quantized and the bubbling solutions tend to −∞ away from blowup points.

Theorem 4.2 (Concentration and quantization). Let {uk} be a sequence of solution to 
(4.3) with (4.4). Assume that q is the only blow-up point of uk in B(q, 2δ), then as 
k → +∞, along a subsequence, there hold

uk → −∞, uniformly on any compact set of B(q, δ) \ {q}, (4.17)

2hkdg(x, q)4γe4uk → βδq, in the measure on B(q, δ), (4.18)

with β = 16π2(1 + γ) and hk is defined in (4.10).
In particular, along a subsequence,

2
ˆ

B(q,δ)

Hk(x)e4uk(x)dVg → 16π2(1 + γ), as k → +∞. (4.19)

Proof. Suppose q is the only blowup pint in B(q, 2δ), then we observe that for any given 
K ⊂⊂ B(q, δ) \ {q}

|uk(x) − uk(y)| ≤ C(K), x, y ∈ K, (4.20)

because the |x −q| is comparable to |y−q| and the total integration of hke4uk is bounded. 
It is easy to obtain (4.20) from the Green’s representation formula. Next we claim that

|∇j
guk(x)|g ≤ C(K), in K, j = 1, 2, 3 (4.21)

Set r0 = 1
4dist(K, B(q, δ) \ {q}). The Green’s representation formula implies

∇j
guk(x) = − 1

4π2

ˆ

B(q,2δ)

∇j
g,x log dg(x, y)Hk(y)e4uk(y)dVg(y) + ∇j

gφk(x).

We only need to show that

ˆ

B(q,2δ)

∣∣∇j
g,x log dg(x, y)

∣∣Hk(y)e4uk(y)dVg(y) ≤ C(K).

By means of (A.2) and the boundness of ‖Hke
4uk‖L1(M), we obtain
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ˆ

B(q,2δ)

∣∣∇j
g,x log dg(x, y)

∣∣Hk(y)e4uk(y)dVg(y) ≤
ˆ

B(q,2δ)

1
|x− y|jHk(y)e4uk(y)dVg(y)

≤C

ˆ

B(q,2δ)∩B(x,r0)

1
|x− y|jHk(y)e4uk(y)dVg +

ˆ

B(q,2δ)\B(x,r0)

1
|x− y|jHk(y)e4uk(y)dVg

≤C(K)r4−j
0 + Cr−j

0

≤C(K).

Then the equation for uk further provides the estimate for the fourth order derivatives 
of uk:

|∇αuk(x)| ≤ C(K), x ∈ K, |α| = 4.

Now we prove (4.17) by contradiction. Suppose that there exists a point x0 ∈ B(q, δ) \
{q} such that {uk(x0)}k∈N is bounded from below. By (4.20) we see that uk is bounded 
in L∞ norm in any compact subset of B(q, δ) \{q}. This fact and the gradients estimates 
of uk guarantee that along a subsequence

uk → u0 in C3,σ
loc (B(q, 2δ) \ {q}),

with some constant σ ∈ (0, 1) and the limit function u0 solves

Pgu0(x) + 2b0(x) = 2h0(x)dg(x, q)4γe4u0(x) in B(q, 2δ) \ {q}.

Around q we use β(r) and its limit to describe the concentration of energy:

βk(r) =
ˆ

B(q,r)

2hk(x)dg(x, q)4γe4uk(x)dVg

β(r) = lim
k→+∞

βk(r), β = lim
r→0

β(r).

From Lemma 4.1 we see that if −1 < γ < 0, β ≥ 8π2(1 + γ); and if γ ≥ 0, β ≥ 8π2. 
Fixing any r > 0 small, we integrate the equation of uk in B(q, r) to obtain

ˆ

B(q,r)

(
Pguk + 2bk

)
dVg =

ˆ

B(q,r)

Hke
4ukdVg = βk(r). (4.22)

By means of the properties of the metric in the conformal normal coordinates (see Ap-
pendix C in [44]), we can rewrite the first term in the left hand of (4.22) as:

ˆ
PgukdVg =

ˆ (
Δ2

guk + divg

((2
3Rgg − 2Ricg

)
∇uk

))
dVg
B(q,r) B(q,r)
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=
ˆ

B(q,r)

∂l

(
gil∂i(Δguk) +

(2
3Rgij − 2Rij

)
∂mukg

ligmj
)

(4.23)

=
ˆ

∂B(q,r)

(
gil∂i(Δguk) +

(2
3Rgij − 2Rij

)
∂mukg

ligmj
)
νl,

where ν denotes the unit outward normal to ∂B(q, r). By letting k → +∞ and then 
r → 0, (4.22)∼(4.23) and the definition of β imply

lim
r→0

ˆ

B(q,r)

(
Pgu0 + 2b0

)
dVg = β.

Therefore, u0 satisfies, in the distribution sense,

Pgu0(x) + 2b̂0(x) = 2h0(x)dg(x, q)4γe4u0(x) + βδq in B(q, 2δ).

Using the Green’s representation formula for u0, we have

u0(x) = − β

8π2 log dg(x, q) + v(x) + w(x) (4.24)

where the first term comes from the convolution of − 1
8π2 log dg(x, y)χ with βδq, the 

second term v comes from the convolution of − 1
8π2 log dg(x, y)χ with 2h0dg(x, q)4γe4u0 :

v(x) = − 1
4π2

ˆ

B(q,δ)

log dg(x, y)h0(y)dg(y, q)4γe4u0(y)dVg(y), (4.25)

and w is the collection of insignificant other terms:

w ∈ C4(B(q, 2δ)). (4.26)

For v we use (4.25) to denote v(x) in B(q, δ) and we extend it smoothly such that v ≡ 0
on M \B(q, 2δ). Based on the definition of v we now show that v ∈ L∞(B(q, δ)) for all 
γ > −1. In fact, from (4.25) we have this lower bound of v in B(q, δ):

v(x) ≥ 1
4π2 log 1

δ
‖ V ‖L1(B(q,δ))≥ C in B(q, δ) (4.27)

where

V (x) = h0(x)dg(x, q)4γe4u0(x).

The lower bounds of h0 and v lead to a lower bound for V (x):
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V (x) = h0(x)dg(x, q)4γe4u0(x) ≥ Cdg(x, q)4γ−
β

2π2 e4v(x)+4w(x) ≥ c

dg(x, q)s

with s = β
2π2 − 4γ and suitable c > 0. Since ‖V ‖L1(B(q,δ)) < ∞ we see immediately that 

s < 4, which is

β < 8π2(1 + γ). (4.28)

Thus there is no way for uk to be bounded from below away from singular source unless 
γ > 0. We have proved (4.17) for γ ≤ 0. For γ > 0 we have an upper bound for V (x):

V (x) ≤ c

dg(x, q)s
e4v(x) in B(q, δ), if γ > 0. (4.29)

To proceed with the proof of v ∈ L∞ we observe from (4.25) and direct computation 
that {

Δ2v(x) = V (x) + η(x) in B(q, 2δ)
v(x) = Δv(x) = 0 on ∂B(q, 2δ),

where η is smooth in B(q, 2δ). Note that the boundary condition of v on ∂B(q, 2δ)
is based on the smooth extension of v mentioned before. Now we employ a standard 
argument of Brezis-Merle [10] to obtain eκ|v| ∈ L1(B(q, 2δ), g) for any constant κ > 0. 
Indeed, let 0 < ε < 1/κ and V = V1+V2 with ‖ V1 ‖L1(B(q,2δ))< ε and V2 ∈ L∞(B(q, 2δ)). 
Correspondingly we write v = v1 + v2, where v1 solves

{
Δ2v1(x) = V1(x) in B(q, 2δ)
v1(x) = Δv1(x) = 0 on ∂B(q, 2δ),

and v2 solves
{

Δ2v2(x) = V2(x) + η(x) in B(q, 2δ)
v2(x) = Δv2(x) = 0 on ∂B(q, 2δ).

Choosing δ̃ = 32π2 − 1 in (4.13), we find

ˆ

B(q,2δ)

eκ|v1| ≤
ˆ

B(q,2δ)

e
|v1|

‖V1‖
L1(B(q,2δ)) ≤ C

based on the smallness of ε. Then by standard elliptic regularity theory, we have v2 ∈
L∞(B(q, 2δ)). Consequently, eκ|v| ∈ L1(B(q, 2δ), g). Since κ is large it is possible to 
use Hölder inequality to obtain V ∈ Lp∗(B(q, 2δ), g) for some p ∈ (1, 4s ) if s ≥ 0 and 
p ∈ (1, +∞) if s ≤ 0. Here p∗ = p

p−1 denotes the conjugate of p. Thus we have proved 
v ≤ C in B(q, 2δ).
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From the L∞ bound of v we can use two positive constants c1 and c2 to bound V
from above and below

c1
dg(x, q)s

≤ V (x) = h0(x)dg(x, q)4γe4u0(x) ≤ c2
dg(x, q)s

, if γ > 0. (4.30)

Next, we aim to derive a contradiction by taking advantage of the Pohozaev identity 
(3.9) in Section 3. Set h(x) = h0(x)dg(x, q)4γ and Ω = B(q, r) in (3.9), then direct 
computation and (A.1) give rise to

ˆ

Ω

xi∂i
(
h0(x)dg(x, q)4γ

)
e4u0 =

ˆ

B(q,r)

(
xi∂ih0(x)dg(x, q)4γe4u0 + xih0∂idg(x, q)4γe4u0

)

and

∂idg(x, q)4γ =4γdg(x, q)4γ−1∂idg(x, q) = 4γdg(x, q)4γ−1(∂i|x− q| + O(r)
)

=4γdg(x, q)4γ−2((x− q)i + O(r2)
)

Immediately, together with (A.1) we get

ˆ

Ω

1
2(x− q)i∂i

(
h0(x)dg(x, q)4γ

)
e4u0

=
ˆ

B(q,r)

2γh0(x)dg(x, q)4γe4u0 +
ˆ

B(q,r)

1
2∂νh0dg(x, q)4γ+1e4u0 + or(1)

Therefore, for r → 0

(LHS) of (3.9) = 2(1 + γ)
ˆ

B(q,r)

h0dg(x, q)4γe4u0 + O(r) = (1 + γ)β + or(1), (4.31)

where limr→0 or(1) = 0. Denote the four integrals on the right hand side of (3.9) by I1, 
I2, I3 and I4, respectively. Thanks to the expansions of g, which are in (3.8), we obtain 
that

|I2| ≤ C

ˆ

B(q,r)

(
r|∇2u0||∇u0| + |x− q||∇2u0||∇u0| + r|x− q||∇2u0| + |x− q||∇u0|

)
,

|I3| ≤ C

ˆ

∂B(q,r)

(
|x− q|2|∇u0|2 + O(r3)|∇u0|2

)
,

|I4| ≤ C

ˆ (
|x− q||∇u0|2 + |x− q|2|∇2u0||∇u0| + O(r2)|∇u0|2 + O(r4)|∇2u0|

)
.

B(q,r)
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Next, we shall estimate |∇ju0| in B(q, r) for j = 1, 2, 3. Recalling (4.24)∼(4.26), it 
is important to consider the ∇jv in B(q, r) for j = 1, 2, 3. By means of the Green’s 
representation formula, we observe that

|∇jv(x)| ≤ C

ˆ

B(q,2δ)

1
dg(x, y)j

V (y) + O(1)

In order to estimate the integral in the inequality above, we decompose B(q, 2δ) into two 
parts

Ω1 = B(q, 2δ) ∩
{
dg(x, y) ≤

dg(x, q)
2

}
, Ω2 = B(q, 2δ) \ Ω1.

In this estimate we use V (y) = O(1)dg(y, q)−s in (4.30). Hence

ˆ

Ω1

V (y)
dg(x, y)j

dVg(y) ≤
C

dg(x, q)s

ˆ

B(x, dg(x,q)
2 )

1
dg(x, y)j

dVg(y) ≤ Cdg(x, q)4−s−j . (4.32)

Using (4.30) again, we obtain that

Ĩ :=
ˆ

Ω2

1
dg(x, y)j

V (y)dVg(y) ≤ C

ˆ

Ω2

1
dg(x, y)j

1
dg(y, q)s

dVg(y).

Fixing some t as follows

t ∈
{

(0, 4
s ), s > 0,

(1,+∞), s ≤ 0,
(4.33)

we have −ts > −4. It follows from the Hölder inequality that

Ĩ ≤ C
(ˆ

Ω2

1
dg(x, y)jt∗

dVg(y)
) 1

t∗
(ˆ

Ω1

1
dg(y, q)st

dVg(y)
) 1

t ≤ C
( c̃ˆ

dg(x,q)
2

1
ρjt∗−3 dρ

) 1
t∗

where t∗ = t
t−1 denotes the conjugate of t and c̃ is some positive constant. Then direct 

computation and the fact −ts > −4 imply that

Ĩ =
ˆ

Ω2

1
dg(x, y)j

V (y)dVg(y) ≤
{

C| log dg(x, q)|
1
t∗ , if jt∗ = 4,

Cdg(x, q)
4
t∗ −j + C, if jt∗ �= 4.

(4.34)

In view of (4.33), we get that
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t∗ ∈
{

( 4
4−s ,+∞), s > 0,

(1,+∞), s ≤ 0.

Hence, there holds 4
t∗ − j < 4 − s − j. Consequently, from (4.32) and (4.34) there exists 

some τ > 0 such that for any r ∈ (0, δ)

|∇jv(x)| ≤ Cdg(x, q)τ−j + C, j = 1, 2, 3, x ∈ B(q, r). (4.35)

In fact, we may choose τ ∈ (0, 1) if jt∗ = 4, and otherwise τ = 4
t∗ . At this point, we 

obtain that

|∇ju0(x)| ≤ Cdg(x, q)−j , j = 1, 2, 3 x ∈ B(q, r). (4.36)

Thus by virtue of (A.1) and (4.35), we may adjust τ > 0 such that on ∂B(q, r)

∂u0

∂r
= − β

8π2
1

|x− q| + O(rτ ) 1
|x− q| + O(1),

Δu0 = − β

4π2
1

|x− q|2 + O(rτ ) 1
|x− q|2 + O(1),

∂

∂r

(
r
∂u0

∂r

)
= O(rτ−1),

∂Δu0

∂r
= β

2π2
1

|x− q|3 + O(rτ ) 1
|x− q|3 + O(1).

Therefore, the estimates of I2, I3 and I4 can be improved:

|I2| ≤ C

ˆ

B(q,r)

(
rd−3 + d−2 + 1

)
dVg ≤ Cr2,

|I3| ≤ C

ˆ

∂B(q,r)

r2dg(x, q)−2dVg ≤ Cr3,

|I4| ≤ C

ˆ

B(q,r)

dg(x, q)−1dVg ≤ Cr3.

Finally for I1 and we use the expansions of gij to obtain

I1 =
ˆ

∂B(q,r)

(
− rνi∂i(Δgu0)∂νu0 + Δgu0∂νu0 + (x− q)kνiΔgu0∂iku0 −

1
2r(Δgu0)2

)

+ O(r)

=
ˆ (

− r∂ν(Δu0)∂νu0 + Δu0∂ν < x− q,∇u0 > −1
2r(Δu0)2

)
+ or(1),
∂B(q,r)
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where we have used det (g) = 1 in B(q, δ) and Δgu = ∂i(gij∂ju). Consequently,

(RHS) of (3.9) = I1 + or(1) = β2

16π2 + or(1). (4.37)

Combining (4.31) and (4.37), we derive that β = 16π2(1 + γ), which yields a con-
tradiction to (4.28) in the case γ > 0. Therefore uk → −∞ uniformly on any compact 
subset of B(q, 2δ) \ {q}, hk(x)dg(x, q)e4uk(x) → 0 uniformly on any compact subset of 
B(q, 2δ) \ {q} and

hk(x)dg(x, q)e4uk(x) → βδq in the measure on B(q, δ).

In the end, we show the quantization β is exactly 16π2(1 + γ). To see this, set 
ck = −́

∂B(q,δ) ukdσ and ǔk(x) = uk(x) − ck. Then, we have ck → −∞ and ǔk → ǔ

in C4(B(q, δ)) as k → +∞. Moreover, there exists a smooth function v̌ such that 
ǔ(x) = − β

8π2 log dg(x, q) + v̌. Taking advantage of the Pohozaev identity as before, we 
obtain β = 16π2(1 + γ) and

2hk(x)dg(x, q)4γe4uk(x) → 16π2(1 + γ)δq. �
Based on Theorem 4.2 and its proof, we immediately obtain the following corollaries.

Corollary 4.3. Suppose that uk satisfies the assumptions in Theorem 4.2, then along a 
subsequence, there holds

uk − ck → −2(1 + γ) log dg(x, q) + v̂, in C4
loc(B(q, 2δ) \ {q}),

where ck = −́
∂B(q,δ) ukdσg → −∞ and v̂ is a smooth function in B(q, 2δ).

Corollary 4.4. Suppose that uk satisfies

Pguk(x) + 2bk = 2Hke
4uk in M

with 
´
B(qj ,2δ) 2Hke

4ukdVg → ρj < 16π2(1 + γj) for some j ∈ {1, · · · , N}. Then {uk} is 
uniformly bounded from above on any subset of B(qj , 2δ). In particular, {uk} can not 
blow up in B(qj , 2δ).

5. Concentration-compactness result and a priori estimate

In this section, we aim to establish the concentration-compactness principle and a 
priori estimate based on the result in the section 4. Indeed, we will derive the following 
concentration-compactness type result for the regular part of {uk}.
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Set

ρk =
ˆ

M

2Hke
4ukdVuk

.

Theorem 5.1 (Concentration-compactness). Let {ũk} be a sequence of solution to (3.5)
and (3.7) with ρk → ρ. Then there exists a subsequence, still denoted {ũk}, for which 
one of the following alternative holds:

(i) supΣ |ũk| ≤ CΣ, for any Σ ⊂⊂ M .
(ii) supΣ ũk → −∞, for any Σ ⊂⊂ M .
(iii) There exist a finite set S = {p1, · · · , pm} ⊂ M with m ∈ N, and sequences of points 

{x1
k}k∈N , · · · , {xm

k }k∈N ⊂ M , such that for all i = 1, · · · , m

xi
k → pi, sup

Σ
ũk → −∞ for any Σ ⊂ M \ S

and

2Hke
4ũk →

m∑
i=1

βiδpi weakly in the sense of measures in M.

Furthermore, βi ∈ 16π2N if pi /∈ {q1, · · · , qN}, and βi = 16π2(1 + γj) if pi = qj for 
some j ∈ {1, · · · , N}.

Proof of Theorem 5.1. We define S to be the set of blow-up points of uk in M , that is,

S = {x ∈ M : ∃xk ∈ M, s.t. xk → x and ũk(xk) → +∞ as k → +∞}.

We distinguish two cases.
Case 1: S �= ∅.
For p ∈ S, Lemma 4.1 say that the mass of {ũk} near p is no less than 8π2(1 + γ). 

Then finite integral assumption 
´
M

Hke
4ũkdVg ≤ C implies card (S) ≤ C. We may 

denote S = {p1, · · · , pm} with some m ∈ N. Therefore, there exists r0 ∈ (0, 1) such that 
for any pi ∈ S, pi is the only blow-up point of ũk in B(pi, r0). Therefore, from the results 
in [19] and Theorem 4.2, we obtain the alternative (iii).

Case 2: S = ∅.
In this case, we have supM ũk ≤ C, which implies Hke

4ũk is uniformly bounded in M . 
Taking into account of the Green’s representation formula,

ũk(x) − ¯̃uk =
ˆ

M

G(x, y)Hk(y)e4ũkdVg(y) = O(1).

Hence, after taking a subsequence, the alternative (i) occurs if lim supk→+∞
´
M

ũkdVg >

−∞, the alternative (ii) holds if lim supk→+∞
´

ũkdVg → −∞, �

M
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Immediately, we derive the following two corollaries from Theorem 5.1.

Corollary 5.2. Suppose that ũk satisfies the assumption in Theorem 5.1 and alternative 
(iii) occurs, then ρ ∈ Γ.

Corollary 5.3. Suppose that ũk satisfies the assumption in Theorem 5.1. Then for every 
ρ ∈ R+\Γ, there exists a constant C only depending on ρ, such that ũk ≤ C. In particular, 
if we additionally assume 

´
M

ũkdVg = 0 or 
´
M

Hke
4ũkdVg ≥ c for some constant c > 0, 

then

‖ ũk ‖L∞(M)≤ C.

The following result explains that Γ is some critical set to (1.8) or (1.9).

Proposition 5.4 (Critical set). Suppose Ker (Pg) = {constants} and that {uk} is a se-
quence of solutions to (1.9)∼(1.10) with the coefficients satisfying (1.11). If the blow-up 
phenomena occur, then 

´
M

2bdVg ∈ Γ.

Proof of Proposition 5.4 and Theorem 1.1. Since
ˆ

M

Hke
4ukdVg =

ˆ

M

hke
4ukdVg =

ˆ

M

bkdVg,

Proposition 5.4 and Theorem 1.1 obviously follow from the two corollaries above. �
Finally we prove Theorem 1.2, which is obviously equivalent to the following form:

Theorem 5.5 (A spherical Harnack inequality (γ /∈ N)). Suppose that ũk satisfies the 
assumption in Theorem 5.1 and qj is a blow-up point of ũk. If γj /∈ N, then near qj there 
holds the following spherical Harnack inequality:

max
x∈B(qj ,δ)

{ũk(x) + (1 + γj) log |x− q|} ≤ C (5.1)

with some constant C.

Proof. Suppose that (5.1) fails, then there exists a sequence {xk} ⊂ B(qj , δ) such that 
maxx∈B(qj ,δ){ũk(x) +(1 +γj) log |x −q|} → +∞. Here we note that these finite points are 
chosen from a selection process [29,19]. We start from q, then xk

1 , xk
2 and so on. Around 

each chosen point there is a bubbling ball in which a profile of global solution can be 
observed and a total integration of 16π2+o(1) is inside the bubbling ball. These bubbling 
balls are finite due to the uniform bound on the total integration of bubbling solutions. If 
we enclose all these bubbling balls by a bigger ball, the calculation of Pohozaev identity 
over the bigger hall yields that the total integration of Hk(x)e4ũk is 16π2(1 + γ). From 



46 M. Ahmedou et al. / Journal of Functional Analysis 283 (2022) 109649
here we obtain the desired contradiction: First there is no bubbling ball centered around 
q, because otherwise the bubbling disk contributes 16π2(1 + γ), which is absurd since 
other bubbling balls contribute a multiple of 16π2, impossible to have the total equal 
to 16π2(1 + γ). Second, since γ is not a positive integer, there is no way to have other 
bubbling balls, since each one of them contributes 16π2 in integration, there is no way 
for all of them to contrite 16π2(1 + γ) in total. �
Appendix A. Comparison between dg(x, q) and |x − q|

In this appendix, we will establish the comparison between the distance dg(x, q) and 
its derivatives and their Euclidean counterparts as in the Appendix B in [44]. We will 
follow the argument in [44] and give the detail for completeness. We claim that for 
j = 0, 1, 2, 3, there holds

∇j
(
log |x− y| − log dg(x, y)

)
= O(r2−j), x ∈ B(q, 2r) \B(q, r/2). (A.1)

We recall that g is the conformal normal metric centered at q, and we identify x, y ∈
TqM with expq x and expq y respectively, where expq is the exponential map at q with 
respect to the metric g. Thus,

dg(x, y) = d(expq x, expq y), x, y ∈ B(q, δ).

Also, we denote ∇g by ∇ for convenience. First, let us note that the following simple 
estimates on d hold:

∣∣∇j(log dg(x, y))
∣∣ ≤ C|x− y|−j , j = 1, 2, 3, 4. (A.2)

Set

f(x) = log |x− y| − log dg(x, y), x ∈ B(q, 2r) \B(q, r/2).

We aim to show that
∣∣∇jf(x)

∣∣ ≤ C|x− q|2−j , j = 0, 1, 2, 3, x ∈ B(q, 2r) \B(q, r/2).

Let R, Rij and Rijkl respectively denote the scalar, Ricci and Riemann curvature of 
g. From the definitions of g and Ri

jkl, we obtain that

∇jRi
jkl(x) = O(1), j = 1, 2.

In conformal normal coordinates, there holds R(q) = Rij(q) = |∇R(q)| = 0. As a 
consequence, we have further

R(x) = O(r2), Rij(x) = O(r).
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We shall derive an estimate on Δ2
gf(x). By the definition of g and (A.4) in [44], that 

is

Pg,y

(
− 1

8π2χ(r) log dg(x, y)
)

= δx + E(x, y), with E bounded,

we have that

Pg log dg(x, q) = O(r4), x ∈ B(q, 2r) \B(q, r/2). (A.3)

In view of the rough estimates (A.2), we can estimate the term:

(
Pg − Δ2

g

)
log dg(x, q) = ∂m

(
gmi

(2
3R(x)gij − 2Rij(x)

)
glj∂j

(
log dg(x, q)

))
= O(r−1).

Therefore, we can get

Δ2
g

(
log dg(x, q)

)
= O(r−1), x ∈ B(q, 2r) \B(q, r/2).

Finally, we consider the term Δ2
g

(
log |x − q|

)
. Since Δ2( log |x − q|

)
= 0, it suffices to 

estimate Δ2
g − Δ2. For any function u, the direct computation leads to

Δ2
gu =gabgij∂ijabu + 2∂ijau

(
∂bg

abgij + gab∂bg
ij
)

+ ∂iju
(
∂ag

ab∂bg
ij + 2gai∂abgbj + gab∂abg

ij + ∂ag
ia∂bg

bj
)

+ ∂ju
(
∂ag

ab∂ibg
ij + gab∂iabg

ij
)
,

(A.4)

where we have used det (g) = 1. Using the expansion of gab:

gab(x) = δab −
1
3Rmabl(q)xaxb + O(|x− q|3),

and replacing u by log |x − q| in (A.4) above, we obtain that

Δ2
g

(
log |x− q|

)
= O(r−2).

Consequently,

Δ2
gf(x) = O(r−2), x ∈ B(q, 2r) \B(q, r/2). (A.5)

An estimate on the L∞-norm of f(x) can easily be seen as follows:

dg(x, q) =
x(t)ˆ

0

√
x′
i(t)gij(t)x′

j(t)dt = |x− q|
(
1 + O(r2)

)
, (A.6)

which implies
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f(x) = O(r2), x ∈ B(q, 2r) \B(q, r/2). (A.7)

Applying the elliptic theory to (A.5) and (A.7), we obtain the claim (A.1) and

dg(x, q) = |x− q|(1 + O(r2)). (A.8)
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