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Abstract
This work proposes a general learned proximal alternating minimization algorithm, LPAM,
for solving learnable two-block nonsmooth and nonconvex optimization problems.We tackle
the nonsmoothness by an appropriate smoothing technique with automatic diminishing
smoothing effect. For smoothed nonconvex problems we modify the proximal alternating
linearized minimization (PALM) scheme by incorporating the residual learning architecture,
which has proven to be highly effective in deep network training, and employing the block
coordinate decent (BCD) iterates as a safeguard for the convergence of the algorithm. We
prove that there is a subsequence of the iterates generated by LPAM, which has at least one
accumulation point and each accumulation point is a Clarke stationary point. Our method
is widely applicable as one can employ various learning problems formulated as two-block
optimizations, and is also easy to be extended for solving multi-block nonsmooth and non-
convex optimization problems. The network, whose architecture follows the LPAM exactly,
namely LPAM-net, inherits the convergence properties of the algorithm to make the network
interpretable. As an example application of LPAM-net, we present the numerical and theo-
retical results on the application of LPAM-net for joint multi-modal MRI reconstruction with
significantly under-sampled k-space data. The experimental results indicate the proposed
LPAM-net is parameter-efficient and has favourable performance in comparison with some
state-of-the-art methods.
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1 Introduction

Recent years have witnessed remarkable success of deep learning across various real-
world applications. However, a purely data-driven approach may fail to approximate the
desired functions, especially when training data are scarce. It is well known that the scarcity
of data leads to overfitting and challenges in interpretation. To mitigate these issues, the
unrolling/unfolding neural networks (UNNs) have been developed and have shown promis-
ing results in solving inverse problems arising from computer vision and medical imaging.
The UNNs are multi-phase neural networks, in which each phase mimics one iteration of
the optimization algorithms for solving the inverse problems. However, despite their promis-
ing performance in practice, most of the existing UNNs only superficially resemble steps of
optimization algorithms. Consequently, their outputs do not really yield solutions to any inter-
pretable variational models. This results is lack of theoretical justifications and convergence
guarantees for their outputs.

Recently a novel class of unrolling methods known as learned optimization algorithms
(LOA) [7, 10, 35] has been developed. The goal of LOA is to tackle the challenges associated
with solving a class of inverse problems arising from various image reconstruction and
synthesis problems. These LOAs strategically combine the learned variational model with
the prior domain knowledge of underlying physical processes to enhance its interpretability.
These methods also utilize optimization to guarantee the convergence.

The optimization scheme induces a highly structured deep network, aligning its archi-
tecture precisely with the iterative algorithm. Hence, the network inherits the convergence
property of the algorithm, and it outputs an approximation of the solution to the variational
model. As a result, it is interpretable and parameter efficient. However, the existing LOAs
only consider a single block of variables.

Motivated by a wide range of applications in machine learning that involve multi-
modalities or multi-domains problems, such as multi-task learning, transfer learning,
multi-modal learning and fusion, dual domain image reconstruction, and image synthe-
sis, in this work we extend the idea of LDA to deal with learned multi-block nonconvex
and nonsmooth optimization problems. More specifically, we develop a novel convergent
learned proximal alternating minimization (LPAM) algorithm to solve the following class of
learnable optimization problems:

(M1) : minimize �(x1, x2;�) := H1(x1; θ1) + H2(x2; θ2) + H(x1, x2; θ),

(x1, x2) ∈ R
n × R

m, (1)

where each learnable function is a parameterized function. � = (θ1, θ2, θ) is the set of
learned parameters. Each function in (1) is possibly nonconvex and nonsmooth.We shall also
study the convergence and iteration complexity of the algorithm, and provide experimental
results on the application on the joint multi-contrast MRI reconstruction with significantly
under-sampled data.

2 RelatedWork

2.1 RelatedWork on AlternatingMinimization Algorithms:

Alternating minimization (AM) or “two block” coordinate minimization (BCM) algorithm
plays an indispensable role in solving a rich class of problems formulated as follows:
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(M) : minimize �(x1, x2) := H1(x1) + H2(x2) + H(x1, x2), (x1, x2) ∈ R
n × R

m .

(2)

The standard approach to solve this problem is the so-called Gauss-Seidel iteration scheme,
also known as block coordinate descent (BCD) method. This scheme alternately keeps one
block of updated variable fixed and optimize the other block [6, 28]. With assumptions on
convexity and smoothness, several convergence results have been established [5, 9].

Inspired bymany practical problems arising frommachine learning and image processing,
such as non-negative matrix factorization, blind image deconvolution, low rank matrix com-
pletion [19, 21], phase retrieval problem [27], interference alignment[29], and compressed
sensing using synthesis sparsity models[1] joint multi-modal image reconstruction[32], the
AM algorithms for nonconvex (including biconvex) and nonsmooth minimization have
attracted great interest. One of the effective approaches to solve nonconvex and nonsmooth
problems (2) is the proximal alternating minimization (PAM) algorithms. The PAM algo-
rithm developed in [3] can be viewed as a proximal regularization of a two blockGauss-Seidel
method for solving (2). Under the assumption that the objective function satisfies Kurdyka-
Lojasiewicz (KL) property, the convergence to a critical point of� of each bounded sequence
generated by the algorithm has been obtained in [4]. However, PAM algorithm requires exact
minimization of a nonconvex and nonsmooth problem in each step. To overcome this diffi-
culty, the pioneerwork [8] introduced a proximal alternating linearizedminimization (PALM)
algorithm, which can be viewed as alternating the steps of the proximal forward-backward
scheme. Building on the KL property, it was proved that each bounded sequence generated
by PALM globally converges to a critical point. Later, the work [30] proposed an inertial
version of the PALM (iPALM) algorithm motivated from the Heavy Ball method of Polyak
[31]. It is also closely related to multi-step algorithms of Nesterov’s accelerated gradient
method [26]. The global convergence to a critical point is also obtained for iPALM under the
assumption that the objective function � satisfies the KL property and the same smoothness
conditions as that for PALM.

2.2 RelatedWork on Unrolling Neural Networks Inspired by AMAlgorithms:

In recent years, the unrolling neural networks inspired by AM algorithms unroll the iteration
scheme of an AM algorithm into a multi-phase deep neural network. Several unrolling con-
volutional neural networks (CNN) based on AM algorithms have been developed for solving
inverse problems in computer vision including the unrolling neural networks resembling the
steps of alternating direction method of multipliers (ADMM) algorithm, and block coodinate
decent (BCD) algorithm. The ADMM-net [33] with the architecture derived from ADMM
has been applied to compressive sensing MRI reconstruction. The deeply aggregated alter-
nating minimization neural network (DeepAM) [24] for image restoration uses a data-driven
approach in the energyminimization framework. At each iteration, theDeepAMadvances the
following two steps in the conventional AM algorithm. One step uses a data-driven approach
to update the auxiliary variable representing the gradient of the image by a CNN that plays
the role of regularization. The other step recovers the image by minimizing the data fidelity
and the disparity between the gradient of the image and updated auxiliary variable. More-
over, several versions of BCD-nets that resemble the steps of BCD algorithm have been
successfully applied to solve the inverse problems for signal/image recovery/reconstruction
[2, 11–14].
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The common idea of those BCD-nets is combining a denoising CNN in defining the
regularization as one module, namely a denoising module, and a model based image recon-
struction (MBIR) as the other module into the BCD framework. TheMBIRmodule enhances
the data fidelity for the image from the denoising module. For instance, at each iteration of
the BCD-net proposed in [14], it trains an image mapping CNN using identical convolutional
kernels in both encoders and decoders as one module in a BCD framework for image recov-
ery. The other module in this BCD-net minimizes an objective function consisting of the data
fidelity and penalty between to be updated image and the deniosed image from image map-
ping CNN. This BCD-Net [14] is modified from [13], where a sparsity promoting denoising
network is trained in denoising modules and the accelerated proximal gradient method using
a majorizer is applied to MBIR modules with statistical CT data-fidelity for low-dose CT
reconstruction. Furthermore, to achieve fast and convergent solutions for the inverse problem
in image processing, the work in [12] proposes a Momentum-Net. The Momentum-Net is
motivated by applying the block proximal extrapolated gradient method using a Majorizer
and convolutional autoencoders to MBIR. Each iteration of Momentum-Net consists of three
core modules: image refining, extrapolation and MBIR. The image refining module is a
denoising module that trains an image refining CNN to remove iteration-wise artifact. The
extrapolation module uses momentum from previous updates to amplify the changes in sub-
sequent iterations and accelerate convergence. The MBIR is non-iterative, since the MBIR
problem in consideration of this work has a closed-form solution.Momentum-Net guarantees
convergence to a fixed-point for general differentiable nonconvex data-fit terms and convex
feasible sets, under the conditions that the sequence of paired refiningCNNs is asymptotically
nonexpansive and the refined image from the image refining module gives an asymptotically
block-coordinate minimizer.

Very recently, [15] presented a learned alternating algorithm aimed at solving a specific
variational model for dual-domain sparse-view CT reconstruction. In this model, the joint
term is convex and smooth, and the regularization terms are learnable in both the image
and sinogram domains, respectively. In this study, we extend their work by considering a
broader scenario, where each term in the objective function can be nonconvex and nons-
mooth. We provide sufficient conditions for taking smoothing approximations of nonsmooth
objective functions. We also provide the analysis of the iteration complexity in addition to
the convergence analysis.

3 Contributions and Organization

In thisworkwe propose a novel learned proximal alternatingminimization algorithmaddress-
ing nonsmooth and nonconvex two-block variational models with provable convergence and
iteration complexity. The proposed LPAM algorithm for solving (M1) determines the archi-
tecture of the deep neural network, hence the design of the LPAM considers not only the
convergence and efficiency, but also the ability to assist the training of the network parameters
�, i.e., reducing the error in minimizing the loss function.

Our main idea for designing this algorithm is as follows: (i) We tackle the nonsmooth-
ness by an appropriate smoothing technique with automatic diminishing smoothing effect;
(ii) We modify the PALM scheme by incorporating the residual learning architecture, which
has proven to be highly effective in deep network training [20]; and (iii) When some modi-
fied PALM iterates fail to satisfy certain conditions, we employ the block coordinate decent
(BCD) iterates as a safeguard to ensure convergence. Moreover, we prove that a subsequence
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generated by the proposed LPAM has accumulation points and all of them are Clarke sta-
tionary points of the nonsmooth nonconvex problem.This algorithm can be readily extended
to multi-block nonsmooth and nonconvex optimization.

This algorithm significantly broadens its applicability, as it relaxes the strict convergence
conditions of the existing algorithms. The PALM or iPALM algorithm assumes the joint term
H(x1, x2) to be smooth and possibly nonconvex, and the proximal points associated with
Hi (xi ) (i = 1, 2) are easy to obtain. Their global convergence results are built onKL property
of the objective function. These assumptions in general cannot be met by the learnable
parameterized functions representing neural networks. The proposed LPAM algorithm will
not require these conditions. Each function in (1) could be nonconvex and nonsmooth.

Without those restrictions, the LPAM algorithm is flexible and applicable to deep learning
problems in various applications.Moreover, the convergence of LPAMcan still be established
in the sense of sub-sequence convergence to Clarke stationary points (see detail in Section 3).
But it cannot have global convergence to a critical point as the PALM or iPALM algorithm.

The convergence result of the BCD-net is based on the assumptions that the paired image
refining neural networks are asymptotically nonexpansive, the data fidelity is differentiable,
and the MBIR problem is not difficult to solve.

The proposed LPAM algorithm does not require these assumptions. The convergence of
LPAM is assured by the convergence of the BCD algorithm for smooth optimization and the
property of the limit of the gradient of the smoothed objective functions as smoothing factor
tends zero. By removing the constraints on the model, the PALM can significantly broaden
its range of applications.

The remainder of the paper is organized as follows. In Section 5 we construct the LPAM
algorithm motivated by the PALM algorithm and the BCD algorithm, and introduce the
three steps that constitute the LPAM algorithm. In Section 6, we prove the convergence
of the LPAM algorithm and deduce the iteration complexity of this algorithm. In Section
7, we apply the LPAM algorithm to the joint reconstruction of T1 and T2 MRI images
with significantly under-sampled data to show the promising performance of the proposed
method. Furthermore, we provide convergence analysis and comparison with several existing
methods. All the figures are listed at the end of the article.

Throughout the paper, we use the following notations without further notification.

1. H(x1, x2; θ) denotes the function H of x1 and x2 given a collection of parameters θ .
Hε(x1, x2; θ) denotes the smooth approximation of H(x1, x2; θ)with a smoothing param-
eter ε.

2. For a differentiable function f (x1, x2), we denote the gradient of f with respect to xi by
∇i f (x1, x2) (i = 1, 2). The gradient f on the domain (x1, x2) ∈ Rn × Rm is represented
by ∇1,2 f (x1, x2).

3. We use ‖ · ‖ to denote the standard L2 norm in Euclidean space, and write 〈·, ·〉Rn for the
standard inner product on Rn .

4. χ := R
n × R

m .

4 Learned Proximal AlternatingMinimization (LPAM) Algorithm

In this section we propose a learned proximal alternating minimization (LPAM) algorithm
for solving the problem (1). Since θ is learned, we will omit it and simply write (1) as (2).

For H1,H2, H and � we assume

(A1) : H1, H2 and H are proper and locally Lipschitz on R
n, R

m and Rn × R
m , respectively.
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Each of them is possibly non-convex and non-smooth.

(A2) : � is coercive, and min
X∈χ

�(X) > −∞

The proposed LPAM algorithm consists of three stages. In the first stage we convert the
nonconvex and nonsmooth problem (2) to a nonconvex smooth optimization problem by an
appropriate smoothing procedure. The smoothing method is not unique, but we require the
smooth approximation �ε of � := H1(x1) + H2(x2) + H(x1, x2), which is defined as

�ε(x1, x2) := H1,ε(x1) + H2,ε(x2) + Hε(x1, x2) (3)

to satisfy following conditions:

• (C1:) ∇H1,ε , ∇H2,ε and ∇1,2Hε are Lipschitz continuous in R
n , Rm and R

n × R
m ,

respectively.
• (C2:) limε→0+,zi→xi Hi,ε(zi ) = Hi (xi ), i = 1, 2, for any given xi in the corresponding

domain. Also for any X = (x1, x2) ∈ R
n × R

m , we assume that when ε → 0+ and
Z = (z1, z2) → X, limε→0+,Z→X Hε(Z) = H(X).

• (C3:) There is a continuous and non-negative function m : [0,∞) → [0,∞) such that
m(0) = 0,

�ε(x1, x2) + m(ε) ≤ �δ(x1, x2) + m(δ) for all (x1, x2) ∈ χ, and 0 < ε ≤ δ.

• (C4:) For anyX∗ = (x1, x2) ∈ R
n×R

m and anyXk → X∗, limXk→X∗,ε→0+ ∇1,2�ε(Xk)

∈ ∂c�(X∗), where ∂c�(X∗) stands for the Clarke subdifferential of � (see Definition
1).

Remark 1 The Lipschitz constants of ∇H1,ε,∇H2,ε and ∇1,2Hε may tend to infinity as ε

tends to 0. The condition C3 is much weaker than the monotonicity of �ε . The condition
C3 roughly says that as long as �ε is not too much different from a monotonic function
with respect to ε, our method still leads to convergence. This brings great convenience in
application.

In the second stage we solve the smoothed nonconvex problem with a fixed smoothing
factor ε, i.e.

min
x1,x2

{�ε(x1, x2) := H1,ε(x1) + H2,ε(x2) + Hε(x1, x2)}. (4)

In light of the substantial improvement in practical performance by ResNet [20], we propose
a modified PALM that incorporates the architecture of the ResNet for solving (4). With
ε = εk > 0, PALM [8] generates a sequence of iterates {xk+1

1 , xk+1
2 } by

zk+1
1 = xk1 − αk∇H1,εk (x

k
1),

uk+1
1 = argmin

u

1

2αk
‖u − zk+1

1 ‖2 + Hεk (u, xk2),

and
zk+1
2 = xk2 − βk∇H2,εk (x

k
2),

uk+1
2 = argmin

u

1

2βk
‖u − zk+1

2 ‖2 + Hεk (u
k+1
1 ,u),

where αk and βk are step sizes. In some situations, the proximal points uk+1
1 and uk+1

2 are
not easy to compute, so we replace Hεk (u, xk2) by its linear approximation at zk+1

1 together
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with a proximal term 1
2pk

‖u − zk+1
1 ‖2. Similarly, we replace Hεk (u

k+1
1 ,u) by its linear

approximation at zk+1
2 together with a proximal term 1

2qk
‖u − zk+1

2 ‖2. Thus, we have

uk+1
1 = argmin

u

1

2αk
‖u − zk+1

1 ‖2+ < ∇1Hεk (z
k+1
1 , xk2),u − zk+1

1 > + 1

2pk
‖u − zk+1

1 ‖2
(5)

= zk+1
1 − τk∇1Hεk (z

k+1
1 , xk2), with τk = αk pk

αk + pk
.

where we recall that ∇1Hεk stands for the gradient for the first n variables.

uk+1
2 = argmin

u

1

2βk
‖u − zk+1

2 ‖2+ < ∇2Hεk (u
k+1
1 , zk+1

2 ),u − zk+1
2 > + 1

2qk
‖u − zk+1

2 ‖2
(6)

= zk+1
2 − γk∇2Hεk (u

k+1
1 , zk+1

2 ), with γk = βkqk
βk + qk

.

In deep learning approach, the step sizes αk , τk , βk and γk could be learnable hyper-
parameters. The advantage for taking the scheme (5) and (6) to update u1 and u2 is that
this scheme is consistent with the architecture of residual learning [22, 23], which only
learns the correction needed for zk+1

i (i = 1, 2) and avoids gradient vanishing in network
training, and thus improves solution quality in practice. However, the convergence of the
sequence {(uk+1

1 ,uk+1
2 )} is not guaranteed. Inspired by the proof of convergence in [8], we

propose the following:
If uk+1

1 and uk+1
2 satisfy

�εk (u
k+1
1 ,uk+1

2 ) − �εk (x
k
1, x

k
2) ≤ −a(‖uk+1

1 − xk1‖2 + ‖uk+1
2 − xk2‖2), (7)

and
‖∇1,2�εk (x

k
1, x

k
2)‖ ≤ a−1(‖uk+1

1 − xk1‖ + ‖uk+1
2 − xk2‖) (8)

for some a > 0, we take xk+1
1 = uk+1

1 , xk+1
2 = uk+1

2 .
If one of (7) and (8) is violated, we compute (vk+1

1 , vk+1
2 ) by BCD algorithmwith a simple

line-search strategy for better step sizes as follows: Let ᾱ, β̄ ∈ (0, 1), we compute

vk+1
1 = argmin

v
< ∇1�εk (x

k
1, x

k
2), v − xk1 > + 1

2ᾱ
‖v − xk1‖2, (9)

vk+1
2 = argmin

v
< ∇2�εk (v

k+1
1 , xk2), v − xk2 > + 1

2β̄
‖v − xk2‖2. (10)

The first order optimality condition leads to

vk+1
1 = xk1 − ᾱ(∇H1,εk (x

k
1) + ∇1Hεk (x

k
1, x

k
2)), (11)

vk+1
2 = xk2 − β̄(∇H2,εk (x

k
2) + ∇2Hεk (v

k+1
1 , xk2)).

If for some δ ∈ (0, 1),

�ε(v
k+1
1 , vk+1

2 ) − �ε(xk1, x
k
2) ≤ −δ(‖vk+1

1 − xk1‖2 + ‖vk+1
2 − xk2‖2), (12)

we set
xk+1
1 = vk+1

1 , xk+1
2 = vk+1

2 ,

otherwisewe reduce step sizes (ᾱ, β̄) by ρ(ᾱ, β̄) → (ᾱ, β̄)where 0 < ρ < 1, and recompute
vk+1
1 , vk+1

2 until the condition (12) holds. Then take xk+1
1 = vk+1

1 , xk+1
2 = vk+1

2 .
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In the third stage, we check if the �2-norm of the gradient of the smoothed objective
function has been reduced enough, so that we can perform the second stage with a reduced
smoothing factor. By gradually reducing the smoothing factor, we obtain a subsequence of the
iterates that converges to a Clarke stationary point of the original nonconvex and nonsmooth
problem.

The scheme of LPMA is given below (For notational simplicity, we omit all learned
network parameters).

Algorithm 1 Learned Proximal Alternating Minimization (LPAM) Algorithm

1: Input: Initial x01, x
0
2, 0 < ρ, γ, δ < 1, and ᾱ, β̄, σ, a, ε0 > 0. Maximum iteration K or tolerance εtol > 0.

2: for k = 0, 1, 2, . . . , K do
3: zk+1

1 = xk1 − αk∇H1,εk (x
k
1),

4: uk+1
1 = zk+1

1 − τk∇1Hεk (z
k+1
1 , xk2),

5: zk+1
2 = xk2 − βk∇H2,εk (x

k
2)

6: uk+1
2 = zk+1

2 − γk∇2Hεk (u
k+1
1 , zk+1

2 , )

7: if conditions (7) and (8) hold, then
8: set xk+1

1 = uk+1
1 , xk+1

2 = uk+1
2 ,

9: else
10: For given ᾱ, β̄ ∈ (0, 1)
11: vk+1

1 = xk1 − ᾱ(∇H1,εk (x
k
1) + ∇1Hεk (x

k
1, x

k
2)),

12: vk+1
2 = xk2 − β̄(∇H2,εk (x

k
2) + ∇2Hεk (v

k+1
1 , xk2)).

13: if condition (12) holds, then
14: set xk+1

1 = vk+1
1 , xk+1

2 = vk+1
2 ,

15: else
16: update (ᾱ, β̄) ← ρ(ᾱ, β̄), then go to 11,
17: end if
18: end if
19: if ‖∇1,2�εk (x

k+1
1 , xk+1

2 )‖ < σγ εk , set εk+1 = γ εk ; otherwise, set εk+1 = εk .
20: if σεk < εtol , terminate.
21: end for
22: Output: xk+1

1 , xk+1
2

We would like to comment here for the LPAM algorithm. Line 2 to line 18 can be viewed
as the steps of the inner iteration, which, for a fixed ε, generates a sequence {xk1, xk2} such that‖∇1,2�ε(xk1, x

k
2)‖ → 0 as k → ∞ (see the first statement of Lemma 1 in the next section).

This guarantees the reduction of ‖∇1,2�ε(xk1, x
k
2)‖ for a fixed ε. When this value drops below

a prefixed value, line 19 decreases ε, and then we repeat the procedures from line 2 to line 18
to generates a new sequence {xk1, xk2} corresponding to the reduced ε. We continue these steps
until the termination condition in the line 20 is met. The sequence formed by the iterates,
in which the reduction criterion for ε is met, has at least one accumulation point and each
accumulation point is a Clarke Stationary Point of the original problem. This will be proved
in Theorem 1 in Section 6.

Remark: In order to make the LPMA algorithm match the ResNet architecture, if the
function Hε(x1, x2) is learnable and H1,ε(x1) and H2,ε(x2) are given, it is better to use the
scheme above. If the functions H1,ε(x1) and H2,ε(x2) are learnable and Hε(x1, x2) is given,
it is better to change the steps 3-6 to the following:

zk+1
1 = xk1 − αk∇1Hεk (x

k
1, x

k
2), (13)

uk+1
1 = zk+1

1 − τk∇H1,εk (z
k+1
1 ); (14)
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zk+1
2 = xk2 − βk∇2Hεk (u

k+1
1 , xk2), (15)

uk+1
2 = zk+1

2 − γk∇H2,εk (z
k+1
2 ); (16)

and keep the other steps in Algorithm 1 unchanged.

5 Convergence Analysis

Since we deal with a nonconvex and nonsmooth optimization problem, the Clarke subdiffer-
ential, which is based on the concept of generalized directional derivatives, is employed here
to characterize the optimality of the solutions to (2).

Definition 1 (Clarke subdifferential). Suppose that f : Rn × R
m → (−∞,∞] is locally

Lipschitz. The Clarke subdifferential of f at X = (x1, x2) is defined as

∂c f (X) :={W ∈ R
n × R

m | < W,V >≤ lim sup
Z→X,t↓0

f (Z + tV) − f (Z)

t
, ∀ V ∈ R

n × R
m},

where X,Z ∈ R
n × R

m , < W,V >=< w1, v1 >Rn + < w2, v2 >Rm for V = (v1, v2),
W = (w1,w2).

Definition 2 (Clarke stationary point) For a locally Lipschitz function f defined as in Def-
inition 1, a point X = (x1, x2) ∈ R

n × R
m is called a Clarke Stationary Point of f , if

0 ∈ ∂c f (X).

Lemma 1 Assume that �ε(x1, x2) is a smooth approximation of �(x1, x2) defined in (3)
satisfying the conditions (C1)-(C4). Let ε, η, a > 0, ρ, ᾱ, β̄ ∈ (0, 1), and X0 = (x01, x

0
2)

be an arbitrary initial condition. Suppose {Xk = (xk1, x
k
2)} is the sequence generated by

repeating Lines 2–18 in Algorithm 1 with εk = ε. Then we have

1. ‖∇1,2�ε(xk1, x
k
2)‖ → 0 as k → ∞.

2. Let (ᾱ, β̄) (ᾱ, β̄ ∈ (0, 1)) be the initial step size for (vk1, v
k
2). The maximum number of

required line search steps �max is

�max =
[
log

(
( Lε

2 + δ)max{ᾱ, β̄})
log 1/ρ

]
+ 1,

where
[
A
]
represents the largest integer less than or equal to A, and Lε is the sum of the

Lipschitz constants for ∇1H1,ε , ∇2H2,ε , and ∇1,2Hε , i.e.

Lε := L∇1H1,ε + L∇2H2,ε + L∇1,2Hε .

3. For any η > 0,

min{k ∈ N; ‖∇1,2�ε(x
k+1
1 , xk+1

2 )‖ < η} ≤ (2a−3 + 4max(ᾱ, β̄)2

δmin(ᾱ, β̄)2ρ2
L2ε )

�(X0) − �∗ + 1

η2
.

(17)

Proof of Lemma 1 Given (xk1, x
k
2), in the case that (uk+1

1 ,uk+1
2 ) generated by Algorithm 1

satisfies the conditions (7)-(8), we take (xk+1
1 , xk+1

2 ) = (uk+1
1 ,uk+1

2 ). From (7)-(8), it is easy
to get

‖∇1,2�ε(xk1, x
k
2)‖2 ≤ 2(�ε(xk1, x

k
2) − �ε(u

k+1
1 ,uk+1

2 ))

a3
. (18)
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If (uk+1
1 ,uk+1

2 ) fails to satisfy the condition (7) or (8), the algorithmcomputes (vk+1
1 , vk+1

2 )

by (11) with a line search strategy. Let �k be the number of the required line search steps
to meet the condition (12), and then we take (xk+1

1 , xk+1
2 ) = (vk+1

1 , vk+1
2 ). This gives the

following

vk+1
1 = xk1 − ᾱρ�k∇1�ε(xk1, x

k
2), vk+1

2 = xk2 − β̄ρ�k∇2�ε(v
k+1
1 , xk2). (19)

Since ∇1,2�ε is Lε-Lipschitz continuous, we have

�ε(v
k+1
1 , vk+1

2 ) ≤ �ε(v
k+1
1 , xk2) + ∇2�ε(v

k+1
1 , xk2) · (vk+1

2 − xk2) + Lε

2
‖vk+1

2 − xk2‖2

≤�ε(xk1, x
k
2) + ∇1�ε(xk1, x

k
2) · (vk+1

1 − xk1) + Lε

2
‖vk+1

1 − xk1‖2

+∇2�ε(v
k+1
1 , xk2) · (vk+1

2 − xk2) + Lε

2
‖vk+1

2 − xk2‖2. (20)

The combination of (19) and (20) yields

�ε(v
k+1
1 , vk+1

2 ) ≤ �ε(xk1, x
k
2)+ (− 1

ᾱρ�k
+ Lε

2
)‖vk+1

1 −xk1‖2+ (− 1

β̄ρ�k
+ Lε

2
)‖vk+1

2 −xk2‖2.
(21)

Hence the condition (12) is met if

− 1

ᾱρ�k
+ Lε

2
≤ −δ, and − 1

β̄ρ�k
+ Lε

2
≤ −δ. (22)

Hence, for any k = 1, 2, . . . the maximum line search steps �max required for (12) satisfies

ρ�max = (δ + Lε/2)
−1(max{ᾱ, β̄})−1,

so we abuse the notation �max by defining it as

�max =
[
log

(
( Lε

2 + δ)max{ᾱ, β̄})
log 1/ρ

]
+ 1. (23)

This proves the second statement of this lemma. Moreover, the fact that �k ≤ �max for any
k = 0, 1, 2, . . ., implies

ρ�k ≥ ρ�max = ρ

(δ + Lε/2)max{ᾱ, β̄} . (24)

Next we prove the other two statements. Note that from (19) the condition (12) can be
rewritten as:

�ε(v
k+1
1 , vk+1

2 ) ≤ �ε(xk1, x
k
2) − δᾱ2ρ2�k‖∇1�ε(xk1, x

k
2)‖2 − δβ̄2ρ2�k‖∇2�ε(v

k+1
1 , xk2)‖2.

(25)

Now we estimate the last term in (25) in terms of ∇1,2�ε(xk1, x
k
2). First by the Lipschitz

continuity of ∇2�ε we have

‖∇2�ε(v
k+1
1 , xk2) − ∇2�ε(xk1, x

k
2)‖ ≤ Lε‖vk+1

1 − xk1‖.
Clearly this implies

‖∇2�ε(v
k+1
1 , xk2)‖ ≥ ‖∇2�ε(xk1, x

k
2)‖ − Lε‖vk+1

1 − xk1‖. (26)
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Here if the right hand side is positive, we will choose σ1 ∈ (0, 1) to be determined, and take
advantage of the following inequality: (a − b)2 ≥ σ1

2 a
2 − σ1b2 together with (19) to obtain

‖∇2�ε(v
k+1
1 , xk2)‖2

≥σ1

2
‖∇2�ε(xk1, x

k
2)‖2 − σ1L

2
ε‖vk+1

1 − xk1‖2

=σ1

2
‖∇2�ε(xk1, x

k
2)‖2 − σ1L

2
ε ᾱ

2ρ2�k‖∇1�ε(xk1, x
k
2)‖2. (27)

Inserting (27) into (25), we have

�ε(v
k+1
1 , vk+1

2 ) − �ε(xk1, x
k
2) (28)

≤ − (
δᾱ2ρ2�k − δβ̄2ρ2�k L2

εσ1ᾱ
2ρ2�k

)‖∇1�ε(xk1, x
k
2)‖2 − δβ̄2ρ2�k σ1

2
‖∇2�ε(xk1, x

k
2)‖2

= − δᾱ2ρ2�k (1 − β̄2ρ2�k L2
εσ1)‖∇1�ε(xk1, x

k
2)‖2 − δβ̄2ρ2�k σ1

2
‖∇2�ε(xk1, x

k
2)‖2.

If β̄2ρ2�k L2
ε < 2

3 , we just choose σ1 = 1
2 . Otherwise we set σ1 as σ1 = 1/(2β̄2ρ2�k L2

ε).
Since in this case, β̄2ρ2�k L2

ε ≥ 2
3 , σ1 ∈ (0, 1).

In either case the coefficient of ‖∇1φε(xk1, x
k
2)‖2 is less than− δ

2 ᾱ
2ρ2�k . For the coefficient

of ‖∇2φε(xk1, x
k
2)‖2, in the first case it is less than − δ

4 β̄
2ρ2�k . In the second case it is less

than − δ
4L2

ε
. Then it is easy to verify that in both cases, by (24) both coefficients are less than

− δmin(ᾱ,β̄)2ρ2

4max(ᾱ,β̄)2L2
ε

Thus we have

�ε(v
k+1
1 , vk+1

2 ) − �ε(xk1, x
k
2) ≤ −Dε‖∇1,2�ε(xk1, x

k
2)‖2, (29)

where

Dε = δmin(ᾱ, β̄)2ρ2

4max(ᾱ, β̄)2L2
ε

. (30)

Consequently,

‖∇1,2�ε(xk1, x
k
2)‖2 ≤ 4max(ᾱ, β̄)2L2

ε

δmin(ᾱ, β̄)2ρ2
{�ε(xk1, x

k
2) − �ε(v

k+1
1 , vk+1

2 )}. (31)

If the right hand side of (26) is negative, we obtain from (19) that

‖∇2�ε(x
k
1 , x

k
2 )‖ ≤ Lε‖vk+1

1 − xk1‖ = Lε ᾱρlk‖∇1�ε(x
k
1 , x

k
2 )‖.

Consequently,

‖∇1,2�ε(x
k
1 , x

k
2 )‖2 = ‖∇1�ε(x

k
1 , x

k
2 )‖2 + ‖∇2�ε(x

k
1 , x

k
2 )‖2

≤ (1 + L2
ε ᾱ

2ρ2lk )‖∇1�ε(x
k
1 , x

k
2 )‖2. (32)

Then we use (32) to estimate (25) differently:

�ε(v
k+1
1 , vk+1

2 ) − �ε(xk1, x
k
2) (33)

≤ − δᾱ2ρ2�k‖∇1�ε(xk1, x
k
2)‖2 ≤ − δᾱ2ρ2lk

1 + L2
ε ᾱ

2ρ2lk
‖∇1,2�ε(x

k
1 , x

k
2 )‖2.

If L2
ε ᾱ

2ρ2lk ≥ 1, we have

�ε(v
k+1
1 , vk+1

2 ) − �ε(xk1, x
k
2) ≤ − δ

2L2
ε

‖∇1,2�ε(x
k
1 , x

k
2 )‖2. (34)
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Otherwise,

�ε(v
k+1
1 , vk+1

2 ) − �ε(xk1, x
k
2) ≤ − δ

2
ᾱ2ρ2lk‖∇1,2�ε(x

k
1 , x

k
2 )‖2. (35)

In either case we see that (29) still holds. Note that we used (24) for a lower bound of ρ2lk .
Thus we have established (31).

Observing (7), (18), (12) and (31)we see that in either case of (xk+1
1 , xk+1

2 ) = (uk+1
1 ,uk+1

2 )

or (xk+1
1 , xk+1

2 ) = (vk+1
1 , vk+1

2 ), there are two constants

b1 = min{a, δ} and b2 = max{2a−3,
4max(ᾱ, β̄)2L2

ε

δmin(ᾱ, β̄)2ρ2
}, (36)

such that

�ε(x
k+1
1 , xk+1

2 ) − �ε(xk1, x
k
2) ≤ −b1(‖xk+1

1 − xk1‖2 + ‖xk+1
2 − xk2‖2), (37)

and
‖∇1,2�ε(xk1, x

k
2)‖2 ≤ b2(�ε(xk1, x

k
2) − �ε(x

k+1
1 , xk+1

2 )). (38)

From (37) and C2 we get

�ε(x
k+1
1 , xk+1

2 ) < �ε(xk1, x
k
2) < . . . < �ε(x01, x

0
2) ≤ �(x01, x

0
2) + 1. (39)

Furthermore, for any integer K > 0 summing up (38) for k = 0, . . . , K , we have

K∑
k=0

‖∇1,2�ε(xk1, x
k
2)‖2 ≤ b2(�ε(x01, x

0
2) − �ε(x

K+1
1 , xK+1

2 )) ≤ b2(�ε(x01, x
0
2) − �∗ + 1).

(40)
We use�∗ to denote a uniform lower bound for all�ε : minx �ε(x) ≥ �∗ for all ε > 0. Since
b2 is independent of K , we see that for any fixed ε > 0, ‖∇1,2�ε(xk1, x

k
2)‖2 → 0 as k → ∞.

This proves the first statement of Lemma 1. For the third statement of Lemma 1, we set
κ := min{k ∈ N; ‖∇1,2�ε(x

k+1
1 , xk+1

2 )‖ ≤ η}, then we know that ‖�ε(x
k+1
1 , xk+1

2 )‖ ≥ η

for all k ≤ κ − 1. Thus from (40) we have

κη2 ≤
κ−1∑
k=0

‖∇1,2�ε(x
k+1
1 , xk+1

2 )‖2 =
κ∑

k=1

‖∇1,2�ε(xk1, x
k
2)‖2 ≤ b2(�ε(x01, x

0
2) − �∗ + 1).

The third statement follows immediately. Lemma 1 is established. ��
From the first statement of Lemma 1 the reduction criterion for εk in Line 19 of Algorithm

1 must be satisfied within finitely many iterations for any k = 1, 2, . . .. Hence εk will
eventually be small enough to terminate the algorithm. Let kl be the counter of iteration
when the criterion in Line 19 of Algorithm 1 is met for the l-th time (we set k0 = −1), then
we can partition the iteration counters k = 0, 1, 2, . . . , into segments accordingly, so that in
the l-th segment k = kl + 1, . . . , kl+1 and εk = εkl+1 = ε0γ

l . In the next theorem we will
give the length of each segment, which will lead to the iteration complexity of Algorithm 1
for any εtol > 0.

Theorem 1 Let �ε and � be described as in Lemma 1 and (C1) − (C4) hold for �ε . If
εtol = 0, suppose {Xk = (xk1, x

k
2)} is the sequence generated by Algorithm 1 with arbitrary

initial condition X0 = (x01, x
0
2). Let {X̃l} = {(x̃l1, x̃l2) =: (xkl+1

1 , xkl+1
2 )} be the subsequence

of {Xk} where the reduction criterion for ε in the algorithm is met for k = kl and l = 1, 2....
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Then {X̃l} has at least one accumulation point and each accumulation point is a Clarke
Stationary Point of the original problem. Moreover, the number of iterations, kl+1 − kl , for
the l − th segment is bounded by

kl+1 − kl ≤ (2a−3 + 4min{ᾱ, β̄}2
δmax{ᾱ, β̄}2 L

2
ε0γ l )

�(X0) − �∗ + 1

σ 2ε20γ
2l+2

. (41)

For any εtol > 0, the total number of iterations for Algorithm 1 to terminate with εtol is
bounded by

l0−1∑
l=1

(2a−3 + 4min{ᾱ, β̄}2
δmax{ᾱ, β̄}2 L

2
ε0γ l )

�(X0) − �∗ + 1

σ 2ε20γ
2l+2

= O(L2
εtol

ε−2
tol ), (42)

where l0 is number of reductions and we have l0 − 1 = log σε0/εtol
log 1/γ , C1 > 0 depends only on

ρ and δ.

Remark 2 In application we usually have Lε ∼ ε−1, which makes the bound in (42) O(ε−4
tol ).

Remark 3 The figure below shows the generation of the sequence {X̃l} in Theorem 1. The
iterates highlighted in red indicate the selected sequence {X̃l}, where the reduction criterion
for εk is met at k = kl for l = 0, 1, 2....

Proof of Theorem 1 First we claim that the sequence X̃l = (x̃l1, x̃
l
2) is compact. This is largely

based on C3. In the first step, the initial X0 corresponds to ε0. Then we have �ε0(X
1) <

�ε0(X
0). After this we may have X2, ..,Xl and then we have ε1 = γ ε0 and �ε1(X

l+1) <

�ε1(X
l). Here we mention that we don’t have �ε1(X

l+1) ≤ �ε0(X
l), but by the third

requirement of �ε we have

�ε1(X
l+1) + m(ε1) ≤ �ε0(X

l+1) + m(ε0) < �ε0(X
0) + m(ε0).

In a similar manner we then prove that �εl (X̃
l)+m(εl) is uniformly bounded for all l. Since

m is a positive continuous function and all εl ≤ ε0, after removing the bound for all m(εl)

we have the uniform bound for all �εl (X̃
l).

Next we estimate the iteration times based on the previous lemma. If εtol �= 0, to estimate
kl+1 − kl , which is the iteration times for the inner circle, we see that ε = εkl = ε0γ

l , then
η in Lemma 1 is η = σγ εkl+1 = σε0γ

l+1, the initial step is Xkl+1. Then,

kl+1 − kl ≤ (2a−3 + 4min{ᾱ, β̄}2
δmax{ᾱ, β̄}2 L

2
ε0γ l )

�(X0) − �∗ + 1

σ 2ε20γ
2 l+2

,

and (41) is justified. Let l0 be the number of reductions, then σε0γ
l0−1 ≥ εtol . Thus,

l0 − 1 ≤ log σε0/εtol

log 1/γ
. (43)

Based on this we have
l0−1∑
l=0

(kl+1 − kl) ≤
l0−1∑
l=1

(
2a−3 + 4min{ᾱ, β̄}2

δmax{ᾱ, β̄}2 L
2
ε0γ l

)
�(X0) − �∗ + 1

σ 2ε20γ
2 l+2

,
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which yields the left hand side of (42). If we use Lεtol as an upper bound of Lε0γ l for all l, the
summation above leads to O(L2

εtol
γ 2l0). Using the estimate of l0 in (43)we see that this bound

is O(L2
εtol

ε−2
tol ). Since ‖∇1,2�εkl

(Xkl+1)‖ ≤ σγ εkl = σε0γ
l+1 → 0 as l → ∞, so if we

choose a subsequence of {xkl+1
1 , xkl+1

2 } that converges to an equilibrium point x̄ = (x̄1, x̄2),
by C4, 0 ∈ ∂cφ, then Definition 2 says x̄ is a Clarke Stationary Point of �. Theorem 1 is
established. ��

5.1 Small Initial Steps

Finally in this subsection we prove that if the initial steps ᾱ and β̄ satisfy

δ < ᾱLε < 1, δ < β̄Lε < 1, (44)

for some δ > 0, we can improve the estimate of Dε from (30) to Dε ≤ cL−1
ε for some

universal constant c > 0.
Since under this assumption we have −1+ Lε

2 ᾱ < 0 and −1+ Lε

2 β̄ < 0, we can estimate

the decrease of �ε(x
k+1
1 , xk+1

2 ) in terms of ‖∇1,2�ε(xk1, x
k
2)‖2 using (19),(21) and �k = 0:

�ε(v
k+1
1 , vk+1

2 ) ≤ �ε(xk1, x
k
2) + (− 1

ᾱ
+ Lε

2
)(ᾱ)2‖∇1�ε(xk1, x

k
2)‖2

+ (− 1

β̄
+ Lε

2
)(β̄)2‖∇2�ε(v

k+1
1 , xk2)‖2. (45)

To estimate ‖∇1,2�ε(v
k+1
1 , xk2)‖we use Lipschitz continuity and an elementary inequality

to obtain (27) as before. Inserting (27) into (45) we have

�ε(v
k+1
1 , vk+1

2 ) − �ε(xk1, x
k
2)

≤
(

(− 1

ᾱ
+ Lε

2
)(ᾱ)2 − (− 1

β̄
+ Lε

2
)(β̄)2σ L2

ε(ᾱ)2
)

‖∇1�ε(xk1, x
k
2)‖2

+ σ

2
(− 1

β̄
+ Lε

2
)(β̄)2‖∇2�ε(xk1, x

k
2)‖2

= c1,ε‖∇1�ε(xk1, x
k
2)‖2 + c2,ε‖∇2�ε(xk1, x

k
2)‖2, (46)

where

c1,ε = (− 1

ᾱ
+ Lε

2
)(ᾱ)2 − (− 1

β̄
+ Lε

2
)(β̄)2σ L2

ε(ᾱ)2

= ᾱ

(
(−1 + Lε

2
ᾱ) − (−1 + Lε

2
β̄)σ (Lε β̄)(Lε ᾱ)

)
(47)

c2,ε = σ

2
(− 1

β̄
+ Lε

2
)(β̄)2 = σ

2
(−1 + β̄Lε

2
)(β̄).

we choose σ to be

σ = 1 − Lε

2 ᾱ

2(Lε β̄)(Lε ᾱ)(1 − Lε

2 β̄)
.

Then,

c1,ε = ᾱ

2
(−1 + Lε ᾱ

2
), c2,ε = −1 + Lε/2ᾱ

4Lε(Lε ᾱ)
.
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Observing (44), we have
|c1,ε | + |c2,ε | ≤ CLε

for some c > 0 independent of ε. This clearly implies that Dε is bounded by CL−1
ε for some

universal C > 0.

6 Experiments

In this section, we examine the performance of the proposed method for joint MRI T1 and
T2 image reconstruction using significantly under-sampled data. We outline the proposed
variational model, explore the convergence property of the LPAM algorithm used to solve
the model, and demonstrate the efficiency of the LPAM-net.

The content is organized into five subsections. The first subsection introduces the vari-
ational model, especially the learned joint feature extractor. Then in the second subsection
we verify the assumptions for the convergence of the algorithm. Then in subsection 3, we
describe the dataset used in the experiments and the metrics used to evaluate the reconstruc-
tion results. Subsection 4 elucidates the complete reconstruction procedure including the
initialization network and the LPAM-net. Finally, in the last subsection, we demonstrate the
numerical results of the experiments via comparisons with several existing methods.

6.1 ProposedModel and the Feature Extractor

Given the under-sampled k-space data f1, f2 of the modalities T1 and T2, our goal is to
jointly reconstruct the corresponding images (x1 and x2). We formulate the T1-T2 joint
reconstruction as the following nonconvex and nonsmooth minimization problem:

min
X=(x1,x2)T

1

2
‖PFx1 − f1‖2 + 1

2
‖PFx2 − f2‖2 + ‖gθ (x1, x2)‖2,1, (48)

where x1 ∈ R
n , x2 ∈ R

n , f1 ∈ C
n and f2 ∈ C

n . f1 and f2 are the k-space data, and g is a
learned joint feature extractor mapping fromC

n×2 toCn×d ,where n is the spatial dimension
and d is the channel number of the output feature tensor. Here, F stands for the discrete
Fourier transform and P is the binary matrix representing the k-space mask when acquiring
data for x1 and x2. (x1, x2) means the image x1 and the image x2 are concatenated. In this
model, the first two terms are data fidelity terms and the last term is the regularization term.
The regularization term gθ is a learnable common feature extractor for x1 and x2 and it
enhances the sparsity of the common features.

More specifically, let X = (x1, x2)T denote the vector of the concatenated two images of
dimension 2n. Then, the regularization term is represented by ‖gθ (X)‖2,1 . The gθ,i (X) ∈ C

d

is the i-feature vector ofX for i = 1, ..., n. Here, n represents the pixel number of the image.
∇1,2gθ (X) represents the gradient of gθ as a function of 2n variables. Then,

‖gθ (X)‖2,1 =
n∑

i=1

‖gθ,i (X)‖,

where g is a vanilla l-layer CNN with component-wise activation function σ :

gθ (X) = wl(σ...σ (w3 ∗ σ(w2 ∗ σ ∗ (w1 ∗ (X)))). (49)
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Here σ is a smoothed ReLu function defined as:

σ(x) =
⎧⎨
⎩
0, if x ≤ −δ
1
4δ x

2 + 1
2 x + δ

4 , if − δ < x < δ

x, if x ≥ δ.

(50)

We denote gθ,i (X) as gi (X) for simplicity in the following text and in the convergence
analysis.

Let rε(X) be the smoothed approximation of the regularization term with the parameter ε

as follows:

rε(X) =
∑
i∈I0

1

2ε
‖gi (X)‖2 +

∑
i∈I1

(‖gi (X)‖ − ε

2
),

where I0 = {i ∈ [n]|‖gi (X)‖ ≤ ε}, I1 = [n] \ I0. Then, the gradient of the smoothed term
is:

∇1,2rε(X) =
∑
i∈I0

∇1,2gi (X)� gi (X)

ε
+

∑
i∈I1

∇1,2gi (X)� gi (X)

‖gi (X)‖ . (51)

Now the smoothed objective function �ε(X) of �(X) is written as

�ε(X) = 1

2
‖PFx1 − f1‖2 + 1

2
‖PFx2 − f2‖2 + rε(X).

6.2 Convergence Analysis

6.2.1 Theoretical Proof

In this subsection, we verify that the proposed variational model (48) and its smoothing
approximation satisfy the assumptions required in Lemma 1 and Theorem 1. This verification
provides a strong theoretical support for the convergence of T1-T2 joint reconstruction.

Step one: Verification of C1 and C2:
From the definition of rε , it is easy to see that both C1 and C2 hold.
Step two: Verification of C3:

In order to prove C3, We choose the continuous function m(ε) = n

2
ε and m(δ) = n

2
δ.

Then, we need to prove the following inequality:

�ε(X) + n

2
ε ≤ �δ(X) + n

2
δ for allX ∈ χ, and 0 < ε ≤ δ. (52)

Note that the data fidelity term is independent of smoothing parameter, hence we only
need to prove the following inequality:

rε,i (X) + ε

2
≤ rδ,i (X) + δ

2
, for all X ∈ χ, and 0 < ε < δ. (53)

Recall that rε,i (X) is defined as:

rε,i (X) :=
⎧⎨
⎩

1
2ε ‖gi (X)‖2, if ‖gi (X)‖ ≤ ε,

‖gi (X)‖ − ε
2 , if ‖gi (X)‖ > ε.

(54)

The proof of (53) consists of three steps. In the first case, if ‖gi (X)‖ ≥ δ, it is easy to
use the definition of rε,i (X) to see that both sides of (53) are equal to ‖gi (X)‖. In the second
case, we suppose ε < ‖gi (X)‖ < δ. Then
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rε,i (X) + ε

2
= ‖gi (X)‖ = ‖gi (X)‖2

2‖gi (X)‖ + ‖gi (X)‖
2

≤ ‖gi (X)‖2
2δ

+ δ

2
= rδ,i (X) + δ

2
.

Note that the last inequality holds due to the simple fact that the function

h(t) := ‖gi (X)‖
2t

+ t

2
,

is nondecreasing for t ≥ ‖gi (X)‖.
In case three: If δ > ε ≥ ‖gi (X)‖,

rε,i (X) + ε

2
= 1

2ε
‖gi (X)‖2 + ε

2
≤ 1

2δ
‖gi (X)‖2 + δ

2
= rδ,i (X) + δ

2
,

where the inequality also holds due to the fact that the function h(t) as defined above is a
nondecreasing function for ε ≥ ‖gi (X)‖. In each case, C3 is satisfied.

Step three: Verification of C4:
Note that Xkl+1 satisfies ‖�εkl

(Xkl+1)‖ → 0 as l → ∞. For simplicity, we use {X j+1}
instead of Xkl+1. ε j is the smoothed factor used in the iteration to obtain X j+1. Then, we
have X j+1 → X̃, ε j → 0 and ∇1,2φε j (X j+1) → 0.

Here we claim that ∇1,2�ε j (X j+1) converges to a Clarke point. Similar proof has been
demonstrated in [10] that

∂�(X̃) = {
∑
i∈I0

∇1,2gi (X̃)�wi +
∑
i∈I1

∇1,2gi (X̃)� gi (X̃)

‖gi (X̃)‖ + ∇1,2 f (X̃)

∣∣∣∣ (55)

wi ∈ C
d , ‖�(wi ; C(∇1,2gi (X̃)))‖ ≤ 1,∀i ∈ I0},

where I0 = {i ∈ [n]|‖gi (X̃)| = 0} and I1 = [n] \ I0. �(w; C(A)) is the projection of w onto
C(A) which stands for the column space of A. Then for J sufficiently large

ε j <
1

2
min{‖gi (X̃)‖; i ∈ I1} ≤ 1

2
‖gi (X̃)‖ ≤ ‖gi (X j+1)‖, ∀ j ≥ J , ∀i ∈ I1.

We use the fact that min{‖gi (X̃)‖; i ∈ I1} > 0 and ε j → 0 to prove the first inequality and
we use X j+1 → X̃ and the continuity of gi for all i to prove the last inequality. Furthermore
we denote

s j,i =

⎧⎪⎨
⎪⎩

gi (X j+1)

ε j
, if ‖gi (X j+1)‖ ≤ ε j ,

gi (X j+1)

‖gi (X j+1)‖ , if ‖gi (X j+1)‖ > ε j .

Then, we have

∇1,2�ε j (X j+1) =
∑
i∈I0

∇1,2gi (X j+1)
�s j,i +

∑
i∈I1

∇1,2gi (X j+1)
� gi (X j+1)

‖gi (X j+1)‖ + ∇1,2 f (X j+1).

As j → ∞, obviously ∇1,2�ε j (X j+1) converges to the three terms in (55). Since

∇1,2�ε j (X j+1) → 0 and ∂�(X̃) is closed, X j+1 converges to a Clarke stationary point.
We have validated the four conditions required for the proposed algorithm to be convergent
in regards of the application of joint reconstruction of T1 and T2 MRI images. Therefore, by
Lemma 1 and Theorem 1, this joint reconstruction will provide a convergent solution.
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6.3 Experiment Settings

The dataset we used in all experiments are from Multi-modal Brain Tumor Segmentation
Challenge 2018.[25] Both the training set and the validation set in Multi-modal Brain Tumor
Segmentation Challenge 2018 contain four modalities (T1,T2, FLAIR and T1c). The training
set is scanned from 285 patients and the validation set is obtained from 66 patients. Each
image has a volume size of 240 × 240 × 155. Each modality has two types of gliomas: 75
volumes of low-grade gliomas(LGG) and 210 volumes of high-grade gliomas(HGG).

In our experiments, we used HGGMRI images from twomodalities (T1 and T2). For each
modality, we chose images scanned from 50 patients as our training set and we randomly
chose images scanned from 6 patients as our testing set. We cropped the 2D image size to be
160 × 180 in the center region, resulting in a overall number of 500 images as our training
set and 60 images as our testing set.

To obtain the k-space images, We usedMatlab to apply 2D fast Fourier transform to every
ground truth image in the training set and the testing set. Then, we shifted the zero-frequency
components to the central area for each image and we applied 10%, 20% radial mask to every
image. After having all the operations on Matlab, we had the k-space under-sampled images,
denoted as f1 and f2.

The Initialization network was implemented in Python using the TensorFlow framework
and the LPAM-net was implemented in Python using the PyTorch framework. Our exper-
iments were run on a Linux server with an NVIDIA A100 Tensor Core GPU available on
HiPerGator. The batch size was set to be 1 in all experiments due to the consideration of the
GPU memory, data volume and the operation speed.

Our reconstruction results are assessed using four evaluation matrices: peak-to-noise ratio
(PSNR), structural similarity (SSIM), normalizedmean squared error (NMSE) and rootmean
square error (RMSE). PSNR, SSIM, NMSE and RMSE can be computed using the following
equations.

Suppose we have a reconstructed image X and a ground truth image Y, each with a
dimension of m × n. We define the mean square error and peak-to-noise ratio as

MSE (X,Y) = 1

mn

m−1∑
i=0

n−1∑
j=0

[X(i, j) − Y(i, j)]2 = 1

mn
||X − Y||22, (56)

and

PSN R (X,Y) = 10 · log10
(

MAX(Y)

MSE(X,Y)

)
.

MAX(Y) is the maximum possible pixel value of the ground truth image. PSNR measures
the quality of a compressed image in comparison to its ground truth image. A higher PSNR
indicates a better quality of the compressed or reconstructed image.

SSI M (X,Y) = (2μXμY + c1)(2σXY + c2)

(μ2
X + μ2

Y + c1)(σ 2
X + σ 2

Y + c2)
,

where μX , μY is the pixel mean of X and Y , respectively; σ 2
X , σ 2

Y are the variance of X , Y
respectively. c1 = (k1L)2, c2 = (k2L)2 are two variables to avoid zero denominator and L is
the dynamic range of the pixel values. The SSIM, ranging from 0 to 1, is used to measure the
similarity between two images. A higher SSIM value indicates a greater similarity between
the two images.

NMSE (X,Y) = ||X − Y||22
||Y||22

.
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Table 1 The evaluation results
(mean ± standard deviation) for
noiseless x01 and x02 after the
initialization network

Image PSNR SSIM NMSE

10% T1 23.146 ± 0.66 0.617 ± 0.034 0.0196 ± 0.0035

10% T2 23.65 ± 1.64 0.619 ± 0.04 0.063 ± 0.026

20% T1 26.517 ± 0.518 0.735 ± 0.031 0.009 ± 0.0014

20% T2 27.032 ± 1.633 0.735 ± 0.031 0.029 ± 0.012

NMSE measures the mean relative error.

RMSE (X,Y) = √
MSE(X,Y) =

√
1

mn
||X − Y||22.

RMSE is utilized to measure the difference between the reconstructed image and the ground
truth.

6.4 The Architecture of the Reconstruction Process

The complete reconstruction procedure consists of the Initialization network and the LPAM-
net. The architecture of the multi-phase LPAM-net follows the LPAM algorithm exactly in
the way that each phase of the network corresponds to each itration of the algorithm. The
details are given in the following subsections.

6.4.1 Initialization Network

To have a better input for LPAM-net, we construct an initialization network, the major
component of which is the initialization blocks. It contains a 4-layer convolutional neural
network(CNN) following the residual structure, as outlined in [20]. Subsequently, an inverse
Fourier transform is applied to the output of the initialization block. The initialization block
performs interpolation on the inputs f1 and f2, which helps to fill up the missing components
of the under-sampled images in the k-space domain. We learned the weights of the kernels
of the Initialization network by minimizing the following loss function L = Loss1+ Loss2
using Adam Optimizer implemented using Tensorflow:

Loss1 = 1

mn
||x01 − xtruth1 ||22,

Loss2 = 1

mn
||x02 − xtruth2 ||22;

where m × n is the dimension of the image.
A learning rate of 10−3 was set, complemented by a decay rate of 0.95 for every 100

steps. The Xavier initialization was utilized to initialize the kernels. Table 1 displays the
quantitative assessment of the Initialization network for the 60 images in the testing set.
This includes the average and the standard deviation for the outputs x01, x

0
2 under noiseless

condition, corresponding to radial masks with an under-sampling ratios of 10% and 20%.

6.4.2 LPAM-net for Joint Reconstruction

The architecture of the proposed LPAM-net is shown in the Fig. 1, which follows the LPAM
algorithm exactly. The inputs for the LPAM-net are the outputs of the Initialization network,
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Fig. 1 The architecture of the propsoed Initialization network and the LPAM-net. Top: The proposed Initial-
ization network; Middle: The architecture of the LPAM-net for joint reconstruction of T1 and T2 images;
Bottom: The detailed illustration of the kth–phase of the LPAM-net

denoted as x01 and x02. The outputs of the final phase of the LPAM-net are the resulting
reconstructed images.

Throughout our experiments, the regularization we used is the �2,1-norm of the joint
feature extractor, which is described in the Section 7.1. The formula for the regularization
term is r(x1, x2) = ||gθ (x1, x2)||2,1, and the expressions of∇1,2rε(x1, x2) and rε(x1, x2) are
given in 51 and 54, respectively. We denote the feature extractor gθ (x1, x2) as g(x1, x2) or g
for simplicity in the following text. Regarding the joint feature extractor g, we parameterize
it as 49 with component-wise activation σ as 50. The prefixed parameter δ in the activation
function σ was set to be 0.01. The default configuration of the feature extraction operator g
was set as follows: it consisted of l = 4 complex-kernel convolution layers. Every kernel in
each layer has a dimension of 3×3×32 (except for the first layer), where 32 is the depth of
the kernel. In the first layer, the kernel size was 3×3×2, with a depth of 2. For each layer,
we had 32 kernels. We set the stride to be 1 and used zero-padding to preserve image size.

For joint reconstruction using the LPAM-net, we need to learn the step sizes αk, τk, βk and
γk, the threshold εk, and the weights of the kernels of the feature extractor g. We consolidated
all the learned parameters into a unified symbol denoted as θ . The total number of the phases
k is set to be 15. To enhance the stability and precision of the parameters before increasing
the iteration count, we initially trained LPAM-net with phase number K=3 for 100 epochs.
After completing the training of the phase K=3, an incremental strategy involving adding
2 more phases each time was employed and for K>3, we conducted training of 30 epochs
during each iteration. Throughout the training, the batch size was set to be 1 and parameters
were updated after the training for every batch.
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Fig. 2 From Left to Right: The PSNR values for the reconstruction results of the T1 and T2 image with a 20%
under-sampling ratio at various phases. In both figures, the LPAM-net learns the network parameters in the
first 15 phases. Starting from X16 the reconstruction results are obtained from the same model (48) with fixed
g learned from the 15-phase LPAM-net. The PSNR values for the reconstruction results of the first 15 phases
are plotted in blue, and since the 16th phase, that are plotted in orange

We updated the parameters θ by minimizing the loss function L ′ using Adam Optimizer
implemented by Pytorch with β1 = 0.9, β2 = 0.999. The learning rate was set at 10−4, and
the initial step sizes were established as α0 = β0 = 0.5. For τ0 and μ0, we have three initial
step sizes for different phases. For phase 1 to phase 3, τ0 = μ0 = 2; for phase 4 to phase
12, τ0 = μ0 = 1; for phase 13 to phase 15, τ0 = μ0 = 0.1. The Xavier initialization was
applied to initialize the kernels. The outputs for the algorithm were denoted as xk1 and x

k
2 and

the ground truth were represented by xtruth1 and xtruth2 . To calculate the loss, we converted
the m × n image into a vector of length mn. Suppose the total pixel number of an image is
mn, the loss function we minimized is expressed as L ′ = Loss3+ Loss4 where Loss3 and
Loss4 are defined as follows respectively:

Loss3 = 1

mn
||xk1 − xtruth1 ||22 + 0.1 × (1 − SSI M(xk1, x

truth
1 ));

Loss4 = 1

mn
||xk2 − xtruth2 ||22 + 0.1 × (1 − SSI M(xk2, x

truth
2 )).

6.5 Convergence Behavior of the LPAM-net

In the previous subsection, we proved that there is at least a subsequence of the iterates
generated by the LPAM algorithm converges to a Clarke stationary point. It is expected that
LPAM would perform stably even beyond the trained phases. To demonstrate its stability
empirically, we set the parameters as follows: ε0 = 0.01, γ = 0.9, σ = 60000 and the
number of phases K = 15. We used the k-space data of a 20% under-sampling ratio for the
joint reconstruction of MR T1 and T2 images. The �2-norm of the gradient of the objective
function value (‖∇1,2�εk (x

k
1, x

k
2)‖) decreases as the number of phase increases. According

to the ε reduction criteria specified in the line 19 in the algorithm, this leads to a reduction in
the smoothing factor from 0.01 to 0.0043 by phase 15. During the 15 phases, the smoothing
factor steadily decreases as the number of phases increases, indicating that the smoothed
objective function is progressively converging to the original problem.

Furthermore, we extend the algorithm beyond 15 phases and observe its performance on
the values of the objective function and PSNR for the reconstruction. To this end, after 15
phases, we set εtol = 0 and ran the algorithm for up to 5010 iterations with fixed g that
is learned at the 15th phase. Figures2 and 3 illustrate the changes in the values of PSNR
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Fig. 3 Objective function value (�(xk1, x
k
2)) of images reconstruction with a 20% under-sampling ratio across

various phase number K. The results of the first 15 phases are plotted in blue and since the 16th phase, that
are plotted in orange (Color figure online)

and objective function as the number of iterations increases, respectively. Figure3 is drawn
based on the objective function with 0.0093 as the coefficient of the regularization part. This
coefficient does not affect the convergence based on Lemma 1. As we can tell, LPAM-net
reduces the objective function value steadily in the first 15 phases. After that, the value of
the objective function continue to decrease, but not as fast as the first 15 phases. The PSNR
for both T1 and T2 images after the 15th phase maintain stable with slightly decrease in the
first a few iterations. The Figure 4 visually shows the reconstructed images obtained after 15,
150, 1005, 5010 iterations. We can see that the reconstructed images are almost identical and
free of visual artifacts, with very similar PSNR for both T1 and T2 contracts. These evidence
shows that LPAM-net maintains stable performance over extended iterations.

6.6 Results

In this subsection, we provide numerical results to showcase the enhanced image quality
achieved by the proposed LPAM-net and the variational model 48. First, in order to show the
advantage of using the joint features as the regularization term in the model, we make com-
parison between the LPAM-net and the Individual-modality Reconstruction Network. Next,
we compare the LPAM-net with the network induced by BCD algorithm, which is equivalent
to run only the lines 10-17 and skip the lines 3-9 in LPAM algorithm. Finally, we present the
comparison of the LPAM-net with four state-of-art methods for joint reconstruction of MRI
T1 and T1 images.

6.6.1 Comparison with Individual-modality Reconstruction Network

This experiment is designed to verify that using the joint features in the regularization term
enhances the accuracy and efficiency of the reconstructions of the MRI T1 and T2 images.
Since the LPAM-net takes advantage of the common features from both T1 and T2 contracts,
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Fig. 4 Top row: Representation brain T1 MRI images reconstructed by the LPAM-net with a 20% under-
sampling ratio in the radial mask after 15, 150, 1005 and 5010 iterations; Bottom row: Representation brain
T2 MRI images reconstructed by the LPAM-net with a 20% under-sampling ratio in radial mask after 15, 150,
1005 and 5010 iterations. PSNRs (dB) are shown in the parentheses

the proposed reconstructed images should preserve more details. To validate this advantage,
we designed an Individual-modality Reconstruction Network which extracts the individ-
ual features of the T1 and T2 contracts separately. The Individual-modality Reconstruction
Network precisely adheres the algorithm in [10] for minimizing the following problem:

min
xi

‖PFxi − fi‖2 + ‖gθi (xi )‖2,1,

where xi ∈ R
n , fi is the under-sampled k-space images and i = 1, 2. gθi is the individual

feature extractor from C
n to C

n×d and it is designed to be a 4-layer CNN. Unlike the joint
reconstruction, in which we learn a joint feature extraction operator gθ , in this individual
reconstruction, we learn two feature extraction operators gθ1 and gθ2 separately. We learned
theweights of the kernels in theCNNs byminimizing the loss function usingAdamOptimizer
implemented by Pytorch. Suppose the total pixel number of an image ismn, the loss function
we minimized is expressed as follows:

Loss = 1

mn
||xki − xtruthi ||22 + 0.1 × (1 − SSI M(xki , x

truth
i )),

where xki is the output and x
truth
i is the ground truth image.

We compare T1 and T2 image reconstruction results with 10% under-sampling ratio k-
space noiseless data resulting from LPAM-net and the Individual-modality reconstruction
Network, respectively. Figure5 shows the PSNR value at the phase number K = 3, 5, ..., 15
of both deep neural networks. Both networks were trained using Adam Optimizer imple-
mented in Pytorch with β1 = 0.9, β2 = 0.999. The learning rate was set at 10−4 and the
number of phase is set at 15. The average PSNR and its standard deviation are depicted in Fig-
ure 5 for each phase. For phase 3, Individual-modality Reconstruction Network outperforms,
but as the phase number increases, the LPAM-net produces better reconstructions. At phase
15, the average PSNR of the LPAM-net improves 0.40 dB for the T1 images and improves
1.49 dB for the T2 images, respectively comparing to the Individual-modality Reconstruc-
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Fig. 5 PSNR for the reconstruction result of images with a 10% under-sampling ratio across various phase
number K . Left: T1 images. Right: T2 images. In both figures, the blue line represents results for joint recon-
struction via LPAM-net and the orange line represents the results from the Individual-modality Reconstruction
Network. The vertical line represents the standard deviation of PSNR

tion Network. In addition, the standard deviation decreases 0.10 dB for the T1 images and
decreases 0.21 dB for the T2 images.

Although PSNR is a crucial measure for comparing the two networks, it is hard for us
to visually discern the impact that the LPAM-net has in the reconstruction process. In order
to visualize the differences, we added Gaussian white noise to the complex-valued under-
sampled k-space images. The real noise and the imaginary noise are both normally distributed
with the same mean and the same standard deviation, but they maintain independence from
each other. Then, we acquired three groups of T1, T2 images: one set is noiseless; one set
has complex-valued noise with a mean of zero and a standard deviation of 3 on both the real
part and imaginary part, and the third set has complex-valued noise with a mean of zero and
a standard deviation of 7 on both the real part and imaginary part. Next, we trained and tested
these three groups of T1,T2 images using both the LPAM-net and the Individual-modality
Reconstruction Network. The resulting reconstructed T1 images from the three groups are
presented in Figure 6 with the ground truth reference. Figure7 illustrates the pointwise
absolute error for each group of the images compared to the ground truth reference. Likewise,
the reconstructed T2 images and the associated absolute errors are shown in Figures 8 and 9.

Figures6 and 8 reveal that, for under-sampled images with any levels of Gaussian white
noise, the edges of the tissues in the images reconstructed by the LPAM-net are sharper than
the edges of the tissue reconstructed by the Individual-modality Reconstruction Network.
Furthermore, the absolute errors are less in the images reconstructed from the LPAM-net
in Figures 7 and 9. Tables 2 and 3 provide a comprehensive summary for the quantitative
comparison between the LPAM-net and the Individual-modality Reconstruction Network
across various levels of noise. The PSNR, SSIM, NMSE and RMSE are provided for images
with each level of noise.We can conclude that the LPAM-net generates more accurate images
than the Individual-modality Reconstruction Network regardless of the noise level in the
under-sampled images. The results show the advantage of using the joint feature operator
as the regularization term in the reconstruction process. Additionally, using joint feature
operator demonstrates greater parameter efficiency.

6.6.2 Comparison with the BCD Algorithm

This experiment aims to demonstrate the effectiveness of the proposed LPAM algorithm by
comparing to the standard BCD algorithm. The LPAM algorithm uses uk+1 to update the
scheme to match the Res-net structure for better training, and vk+1 as a safeguard to ensure
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Fig. 6 Reconstruction results of T1 brain images by the LPAM-net and the Individual-modality Reconstruction
Network employing the radial mask with a 10% under-sampling ratio. Top to bottom rows: Reconstruction
results obtained by the Individual-modality Reconstruction Network and the LPAM-net, respectively. The first
to the third columns: Images reconstructed from the k-spaces, where a complex noise with a standard deviation
of 7, 3, and 0 (noiseless) is added, respectively. The last column: Ground truth reference. PSNRs (dB) are
shown in the parentheses. The regions of interest are magnified in red boxes for better visualization

convergence. The standard BCD algorithm is equivalent to remove the iterations for updating
uk+1 and only performing vk+1 in the LPAM. Although it converges for nonconvex smooth
optimization, but the networks induced by BCD algorithm do not have Resnet structure. We
conducted experiments comparing these two methods on under-sampled T1 and T2 images
using the same variational model 48. Figures10 and 11 illustrate the average PSNR and SSIM
versus phase number with respect to the radial mask with a under-sampling ratio of 10% and
20%. As we can tell, both the average PSNR and the average SSIM of the two algorithms
ascend, indicating an increase in image quality as phase number rises. For each phase, the
values of the PSNR and the SSIM of the LPAM algorithm outperforms the values of the BCD
algorithm in each graph, highlighting the efficiency and accuracy of the LPAM algorithm.
The compared networks were trained using Adam Optimizer implemented in Pytorch with
β1 = 0.9, β2 = 0.999 and the learning rate was set at 10−4.

6.6.3 Comparison with the State-of-the-Art

We compare the proposed algorithm LPAM-net with five representative methods, including
the X-net[16], the Joint Group Sparsity-based Network (JGSN)[17], ReconFormer[18] and
the Joint Cross-Attention Network (jCAN)[34]. X-net, originating from the U-net, intro-
duces the capability to accommodate two inputs and generates two outputs and it is a non
model-based method. JGSN, jCAN and ReconFormer are three model-based methods. JGSN
unrolls the iterative process of the joint sparsity algorithm. jCAN deploys Vision Transformer
and CNN in the image and k-space domains, respectively. ReconFormer designs Recurrent
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Fig. 7 The corresponding pointwise absolute errors between the reconstructed brain T1 images in Fig. 6 and
the ground truth reference. The errors are scaled up by a factor of 4 for better visualization and the bright parts
indicate large value

Pyamid Transformer at each architecture unit. Since the original codes for X-net and JGSN
are not available, we implemented X-net and JGSN according to their original paper.

Similar to LPAM-net, X-net and JGSN update the two under-sampled modalities jointly.
ReconFormer is a single-modality reconstruction network and we reconstructed T1 and T2
images respectively for comparison. jCAN restores the under-sampled target modality with
guidance from the full-sampled auxiliary modality; thus, we used full-sampled T1 images
to restore under-sampled T2 images and vice versa for comparison. Since some methods
incorporate transformers, we adjusted the patch size and the window size to fit our image
sizes. To ensure a fair evaluation, we trained each of the state-of-the-art method for 100
epoches and the quantitative analysis of the reconstructed images is presented in the Tables
4 and 5. Compared with the other methods, the proposed LPAM-net achieves competitive
performance on both T1 and T2 images with a under-sampling ratio of 20%.
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Fig. 8 Reconstruction results of T2 brain images by the LPAM-net and the Individual-modality Reconstruction
Network employing the radial mask with a 10% under-sampling ratio. Top to bottom rows: Reconstruction
results obtained by the Individual-modality Reconstruction Network and the LPAM-net, respectively. The first
to the third columns: Images reconstructed from the k-spaces, where a complex noise with a standard deviation
of 7, 3, and 0 (noiseless) is added, respectively. The last column: Ground truth reference. PSNRs (dB) are
shown in the parentheses. The regions of interest are magnified in red boxes for better visualization

Table 4 The comparison (mean ± standard deviation) between LPAM-net and the state-of-the-art methods
for T1 images with an under-sampling ratio of 20%

Method PSNR SSIM NMSE RMSE #Par

X-net 32.713± 0.93 0.93± 0.006 0.002± 0.0006 0.024± 0.024 42.816M

JGSN 38.617± 1.22 0.972± 0.0048 0.0006± 0.0002 0.012± 0.0016 21192

jCAN 35.367± 1.006 0.927± 0.0087 0.0012± 0.0004 0.017± 0.0019 45.1M

ReconFormer 39.124± 1.47 0.977± 0.0047 0.0005± 0.0002 0.011± 0.0019 1.1M

LPAM-net 40.66± 1.508 0.983± 0.004 0.0004± 0.0002 0.0094± 0.0016 56510

Table 5 The comparison (mean ± standard deviation) between LPAM-net and the state-of-the-art methods
for T2 images with an under-sampling ratio of 20%

Method PSNR SSIM NMSE RMSE #Par

X-net 32.65± 1.634 0.923± 0.0106 0.0081± 0.0033 0.024± 0.005 42.816M

JGSN 39.3± 1.413 0.975± 0.0046 0.0017± 0.0006 0.011± 0.0017 21192

jCAN 37.583± 1.513 0.964± 0.0054 0.0025± 0.001 0.013± 0.0023 45.1M

ReconFormer 40.58± 1.706 0.982± 0.0051 0.0012± 0.0004 0.0095± 0.0018 1.1M

LPAM-net 42.536± 1.527 0.987± 0.0043 0.0008± 0.0003 0.0076± 0.0013 56510
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Fig. 9 The corresponding pointwise absolute errors between the reconstructed brain T2 images in Fig. 8 and
the ground truth reference. The errors are scaled up by a factor of 4 for better visualization and the bright parts
indicate large value

Fig. 10 Average PSNR and SSIM of the reconstruction results for images with a 10% under-sampling ratio
obtained by the LPAM algorithm and the BCD algorithm across various phase number K. Left: T1 images.
Right: T2 images
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Fig. 11 Average PSNR and SSIM of the reconstruction results for images with a 20% under-sampling ratio
obtained by the LPAM algorithm and the BCD algorithm across various phase number K. Left: T1 images.
Right: T2 images
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