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Abstract. Let A = (aij)n×n be a nonnegative, symmetric, irreducible and

invertible matrix. We prove the existence and uniqueness of radial solutions to

the following Liouville system with singularity:
∆ui +

∑n
j=1 aij |x|

βj euj(x) = 0, R2, i = 1, ..., n∫
R2 |x|βieui(x)dx <∞, i = 1, ..., n

where β1, ..., βn are constants greater than −2. If all βis are negative we prove
that all solutions are radial and the linearized system is non-degenerate.

1. Introduction. In this article we consider the following singular Liouville system
∆ui +

∑n
j=1 aij |x|βjeuj(x) = 0, R2, i ∈ I := {1, ..., n},∫

R2 |x|βieui(x)dx <∞, i ∈ I.
(1)

where β1, .., βn are constants greater than −2, A = (aij)n×n is a constant matrix
that satisfies

(H1) : A is symmetric, nonnegative, irreducible and invertible.

A is irreducible means there is no disjoint partition of I into I1 and I2 such that
aij = 0 for all i ∈ I1 and j ∈ I2. For the system (1), the irreducibility of A means
(1) can not be written as two independent subsystems. If n = 1 and a11 = 1, the
singular Liouville system is reduced to the following single Liouville equation:

∆u+ |x|βeu = 0, R2,

∫
R2

|x|βeu <∞. (2)
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Prajapat-Tarantello [28] classified all the solutions to (2) and proved, on one hand,
that if β/2 6∈ N, all solutions are radial and can be written as

u(x) = log
µ

(1 + µ
8(β/2+1)2 |x|β+2)2

, µ > 0.

On the other hand, a solution may not be symmetric around any point if β/2 ∈ N.
The proof of Prajapat-Tarantello uses properties of integrable system. However, the
Liouville system is not integrable and we have to apply new methods. The purpose
of this paper is to prove a classification theorem for all the radial solutions to (1).
Let u = (u1, ..., un) be a solution to (1) we use σ = (σ1, ..., σn) to denote its energy:

σi =
1

2π

∫
R2

|x|βieui(x)dx, i ∈ I := {1, ..., n} (3)

and we set ΛI(σ) as

ΛI(σ) = 2
∑
i∈I

(βi + 2)σi −
∑
i,j∈I

aijσiσj .

For J ⊂ I, ΛJ(σ) is understood similarly. The main theorem of this article is

Theorem 1.1. Let A satisfy (H1), β1, ..., βn > −2 be constants,

1. If u = (u1, ..., un) is a radial solution to (1), then

ΛI(σ) = 0, ΛJ(σ) > 0 ∀∅ ( J ( I. (4)

2. For each σ = (σ1, ..., σn) satisfying (4), there exists a global radial solution u
whose energy is σ.

3. If u and v are both radial solutions to (1) with∫ ∞
0

rβi+1eui(r)dr =

∫ ∞
0

rβi+1evi(r)dr, i ∈ I.

Then ui(r) = vi(δr) + (2 + βi) log δ for some δ > 0 and all i ∈ I.

System (1) is reduced to the following form if β1 = ... = βn = 0,
∆ui +

∑
j∈I aije

uj = 0, R2,∫
R2 e

ui <∞, R2.
(5)

Under the assumption (H1) on A, a standard moving-plane argument shows that
all u1, .., un are radially symmetric with respect to a common point (see [12] for
the proof). The classification of all solutions to (5) has been completed through
the works of Chipot-Shafrir-Wolansky [12, 13] and the authors [24]. Among other
things Chipot et. al. prove that

Theorem A: (Chipot-Shafrir-Wolansky) Suppose A satisfies (H1), for any solu-
tion u = (u1, ..., un) to (5), its energy σ = (σ1, ..., σn) belongs to the hypersurface

Γ := {σ = (σ1, ..., σn); ΛI(σ) = 0, ΛJ(σ) > 0, ∀∅ ( J ( I. }

On the other hand, for any σ ∈ Γ, there is a solution u of (5) whose energy is σ.
It can be readily verified that the energy of a solution of (5) is invariant under

rigid translations and appropriate scalings: Let u be a global solution to (5), then
v = (v1, ..., vn) defined by

vi(y) = ui(δy + x0) + 2 log δ, i ∈ I (6)
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for any x0 ∈ R2 and any δ > 0 clearly satisfies
∫
R2 e

vi =
∫
R2 e

ui for all i ∈ I. It
turns out that for any σ ∈ Γ, all the global solutions that have the energy σ are
related by a translation and a scaling described in (6):

Theorem B: ([24]) Suppose A satisfies (H1). Let u = (u1, ..., un) and v =
(v1, ..., vn) be global solutions to (5) such that

∫
R2 e

ui =
∫
R2 e

vi for all i ∈ I, then v

and u are related by (6) for some δ > 0 and x0 ∈ R2.

Theorem A and Theorem B together give a classification of all the solutions to
(5). One obvious question that Theorem 1.1 raises is, for what β1, .., βn do all the
solutions to (1) have to be radially symmetric? We give an affirmative answer for
the case of non-positive β.

Theorem 1.2. Let u be a solution to (1), A satisfy (H1). Suppose βi ∈ (−2, 0] for
i ∈ I and are not all equal to 0. Then all components of u are radial functions.

Systems (1) and (5) and their reductions appear in many disciplines of mathe-
matics and have profound background in Physics, Chemistry and Ecology. When
(5) is reduced to one equation, it becomes the classical Liouville equation

−∆u = eu,

which is related to finding a metric with constant Gauss curvature. In Physics, the
Liouville equation represents the electric potential induced by the charge carrier in
electrolytes theory [29] and is closely related to the abelian model in the Chern-
Simons theories [18, 19, 17].

The Liouville systems (5)(1) are used to describe models in the theory of chemo-
taxis [11, 21], in the physics of charged particle beams [2, 14, 22], and in the theory
of semi-conductors [26]. For applications of Liouville systems, see [3, 12, 24, 25] and
the references therein. Here we note that Liouville systems with singularities are of
special importance in Physics and Geometry. For example, the single equation (2)
appeared in [27] as a limiting equation in the blow-up analysis of periodic vortices
for the Chern-Simons theory of Jackiw and Weinberg [16] and Hong et. al. [15]. In
geometry (1) is related to finding metric with conic singularities [4, 5, 6, 8, 20].

It is well known that classification theorems are closely related to blowup anal-
ysis and degree-counting theorems. For many equations the asymptotic behavior
of blowup solutions are approximated by global solutions. For example, for the
Liouville equation

∆u+ V eu = 0, Ω ⊂ R2,

if V is a positive smooth function, blowup solutions near a blowup point can be
well approximated by global solutions to

∆u+ eu = 0, R2

see [9, 23, 7, 30]. If V is nonnegative and the blowup point happens to be a zero of
V , the profile of blowup solutions is similar to that of the global solutions of (2), see
[28, 1, 31]. We expect Theorem 1.1 to be useful in the study of singular Liouville
systems defined on Riemann surfaces or domains in R2.

The proof of the uniqueness part of Theorem 1.1 (the third statement) is moti-
vated by the authors’ previous work [24] on the Liouville system with no singularity.
The existence part (the second statement) is based on the uniqueness result and is
therefore significantly different from the duality method used by Chipot. et. al. in
[12]. The first statement in Theorem 1.1 is similar to the corresponding case in [12].
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For many applications, especially on the construction of bubbling solutions it is
important to study the nondegeneracy of the linearized system. Our next result is
concerned with the case when β is non-positive.

Theorem 1.3. Let βi ∈ (−2, 0) for all i ∈ I, u = (u1, ..., un) solve (1) corresponding
to β = (β1, .., βn). Let φ = (φ1, .., φn) be a bounded solution to

∆φi +
∑
j∈I

aij |y|βjeuj(y)φj(y) = 0, R2, i ∈ I.

Then there exists C ∈ R such that φi(r) = C(ru′i(r) + 2 + βi) for all i ∈ I.

Remark 1. By Theorem 1.2 u is radial in Theorem 1.3.

The organization of this paper is as follows. In section two we list standard tools
to be used in the proof of Theorem 1.1. Then in section three we prove the three
statements of Theorem 1.1. Theorem 1.2 and Theorem 1.3 are proved in section
four and section five, respectively. Finally in the appendix we provide proofs for
the tools used in the proof of Theorem 1.1.

2. Preliminary results. In this section we list a few ODE lemmas to be used in
the proof of Theorem 1.1. Since these lemmas are standard we put their proofs in
the appendix, in order not to disturb the main part of the paper.

Lemma 2.1. Let u = (u1, ..., un) be a solution to (1) where A satisfies (H1). Then

ui(x) = −mi log |x|+ ci + o(|x|−δ), i ∈ I, |x| > 1,

∇ui(x) = −mix/|x|2 +O(|x|−δ−1), i ∈ I, |x| > 1,

where

mi =

n∑
j=1

aijσj > 2 + βi, i ∈ I,

ci = ui(0) +

∫ ∞
0

log r

n∑
j=1

aijr
βj+1euj(r)dr

δ is some positive small number.

Remark 2. u is not assumed to be radial in Lemma 2.1.

The next lemma is on the linearized system of (1) expanded along a radial solution
u:

(rφ′i)
′ +
∑
j

aijr
βjeujrφj = 0, i ∈ I. (7)

Lemma 2.2. Let φ = (φ1, ..., φn) satisfy (7) with βi > −2 for all i ∈ I, then
φi(r) = O(log r) at infinity for i ∈ I.

Lemma 2.3. Let A satisfy (H1), βi > −2 for i ∈ I, then for any c1, ..., cn ∈ R,
there is a unique solution to{

u′′i (r) + 1
ru
′
i(r) +

∑n
j=1 aijr

βjeuj(r) = 0, i = 1, .., n,

ui(0) = ci, i = 1, .., n
(8)

that exists for all r > 0.

Remark 3. u may not have finite energy.

If we further know that aii > 0 for all i, then the solution has a finite energy:
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Lemma 2.4. Let aii > 0 for all i ∈ I, then for all c1, ..., cn ∈ R, there exists a
solution to

u′′i + 1
ru
′
i(r) +

∑
j∈I aijr

βjeuj(r) = 0, 0 < r <∞, i ∈ I,∫∞
0
eui(r)rβj+1dr <∞, i ∈ I,

ui(0) = ci, i ∈ I.

(9)

Lemma 2.5. Let φ be a solution of
(rφ′i(r))

′ +
∑n
j=1 aijr

βj+1eujφj(r) = 0, 0 < r <∞,

φi(0) = 0, ∀i ∈ I.
Suppose βi > −2 for all i ∈ I, then φi ≡ 0 for all i ∈ I.

3. Proof of Theorem 1.1.

Proof. (Proof of Theorem 1.1)

3.1. The proof of the first statement of Theorem 1.1.

Lemma 3.1. Let u = (u1, .., un) be a radial solution of (1) with A satisfying (H1)
and βi > −2 for all i. Then

ΛI(σ) = 0, ΛJ(σ) > 0, ∀∅ ( J ( I.

Proof of Lemma 3.1: This proof uses the same idea as in [12]. Let ũi(t) = ui(e
t),

then
ũ′i(t)→ −mi as t→∞. (10)

The equation for ũi(t) is

ũ′′i (t) +

n∑
j=1

aije
(2+βj)t+ũj(t) = 0, t ∈ R, i ∈ I. (11)

Let zi(t) =
∑n
j=1 a

ij ũj(t), then z′i(t)→ −σi as t→∞. (11) can be rewritten as

z′′i (t) = −e(2+βi)t+
∑n
j=1 aijzj , i ∈ I. (12)

Clearly z′′i (t) < 0 for all i ∈ I and all t ∈ R. Let wi(t) = z′i(t), then by (12) and
(10)

wi(−∞) = 0, wi(t) < 0 ∀t, wi(∞) = −σi.
In addition we have w′i(−∞) = w′i(∞) = 0. Using the definition of wi we differen-
tiate (12) to obtain

w′′i (t) = (2 + βi)w
′
i(t) + w′i(t)

∑
j∈I

aijwj(t). (13)

Taking the summation for i ∈ I in (13) we can write (13) as∑
i∈I

w′′i (t)−
∑
i∈I

(2 + βi)w
′
i(t) =

∑
i,j∈I

1

2
aij(wi(t)wj(t))

′.

Integrating t from −∞ to ∞ we obtain ΛI(σ) = 0. For J ⊂ I, summation for i ∈ J
in (13) leads to∑

i∈J
w′′i (t)−

∑
i∈J

(2 + βi)w
′
i(t)−

1

2

∑
i,j∈J

aij(wiwj)
′(t) =

∑
i∈J,j∈I\J

aijw
′
i(t)wj(t).
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Integrating the above for t ∈ (−∞,∞) we obtain∑
i∈J

(2 + βi)σi −
1

2

∑
i,j∈J

aijσiσj =
∑

i∈J,j∈I\J

aij

∫ ∞
−∞

w′i(t)wj(t)dt.

Since the irreducibility of A means that there exists aij > 0 for i ∈ J, j ∈ I \ J
we see the right hand side of the above is strictly positive because w′i(t) < 0 for
all i ∈ I and t ∈ R and wi(t) < 0 for all i ∈ I and t ∈ R. Thus we have obtained
ΛJ(σ) > 0. Lemma 3.1 is established. �

3.2. The proof of the third statement of Theorem 1.1.

Proposition 1. Let u and v both be radial solutions to (1) such that∫ ∞
0

rβi+1eui(r)dr =

∫ ∞
0

rβi+1evi(r)dr, i ∈ I.

Then ui(r) = vi(δr) + (2 + βi) log δ for some δ > 0 and all i ∈ I.

To prove Proposition 1 we first establish a uniqueness result for the linearized
system:

Lemma 3.2. Let φ = (φ1, ..., φn) be a bounded solution of (7), then φi(r) =
C(ru′i(r) + 2 + βi) for all i ∈ I.

Proof of Lemma 3.2: Let

φ0 = (ru′1(r) + 2 + β1, ..., ru
′
n(r) + 2 + βn).

Then by computation φ0 is a solution to the linearized system. Suppose there
exists another bounded solution φ1 which is not a multiple of φ0. Without loss of
generality we assume φ1

1(0) = 0, as by Lemma 2.5 one of φ1
i (0) must be different

from 2 + βi. To derive a contradiction we set

S = {α; ∃ a bounded solution φ = (φ1, ..., φn) such that φ1(0) = 2 + β1,

φi(0) = αi ≤ 3 + βi; , i = 2, ..., n, α = min{2 + β1, α2, ..., αn},∫ r

0

eui(s)φi(s)s
1+βids > 0, ∀r > 0, i = 1, ..., n. }.

First we see that 2 + min{β1, ..., βn} ∈ S. Indeed the expression of φ0 gives∫ r

0

s1+βieui(s)φ0
i (s)ds = r2+βieui(r) > 0.

Next we observe that S is a bounded set. Indeed, suppose α < 0 is in S, let φ̃ be
the function corresponding to α, then ∃j ∈ I such that φ̃j(0) = α. This leads to∫ r

0
s1+βjeuj(s)φ̃j(s)ds < 0 for r small, a contradiction to the definition of S. Let ᾱ

be the infimum of S and let αk = (αk1 , ..., α
k
n) ∈ S be a sequence in S that tends to ᾱ

from above. Suppose φk = (φk1 , ..., φ
k
n) is the solution corresponding to αk, then we

claim that φk converges to φ̄ = (φ̄1, ..., φ̄n), which is also a bounded solution with
the strict monotonicity property described in S. Indeed, let ψm = (ψm1 , ..., ψ

m
n ) be

the solution to the linearized system such that ψmi (0) = δmi . Then by Lemma 2.5

φk =

n∑
m=1

αkmψ
m.
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Here we recall that by Lemma 2.2 ψmi (r) = O(log r) for r large. Since ᾱ ≤ αki ≤
3 + βi for i ∈ I and all k. Along a subsequence φk tends to φ̄ over all compact
subsets of R. The monotonicity property of φk implies∫ r

0

eui(s)φ̄i(s)s
1+βids ≥ 0, ∀i ∈ I, ∀r > 0.

On the other hand, since φk are all bounded functions, for each φki we find rl →∞
as l→∞ such that rl(φ

k
i )′(rl)→ 0. From the equation for rφki we have∫ ∞

0

n∑
j=1

aijr
βj+1euj(r)φkj (r)dr = 0, ∀i ∈ I.

Since A is invertible

0 =

∫ ∞
0

eui(r)φki (r)rβi+1dr =

n∑
m=1

αkm

∫ ∞
0

eui(r)ψmi (r)rβi+1dr.

Since ψmi (r) = O(log r),

∫ ∞
0

eui(r)ψmi (r)rβi+1dr is well defined, we let αk →

(ᾱ1, ..., ᾱn) to obtain ∫ ∞
0

eui(s)φ̄i(s)s
βi+1ds = 0, ∀i ∈ I. (14)

As a consequence of (14), φ̄ is bounded. Indeed, the equation for φ̄ is

(rφ̄′i(r))
′ = −

∑
j

aijr
βj+1euj(r)φ̄j(r), r > 0.

Using φ̄i(r) = O(log r), rβi+2eui(r) = O(r−δ) for some δ > 0 (Lemma 2.1) and (14)
we know ∫ r

0

eui(s)φ̄i(s)s
βi+1ds = 0−

∫ ∞
r

eui(s)φ̄i(s)s
βi+1ds = O(r−δ/2)

for r large. Thus φ̄′i(r) = O(r−1−δ) for all r large, which implies that φ̄i is
bounded. Since each φ̄i is a non-increasing function, (14) implies that φ̄i decreases
to a negative constant when r → ∞. Indeed, by (14) either φ̄i ≡ 0 or φ̄i de-
creases to a negative constant. The first possibility does not exist, because the
fact φ̄1(0) = 2 + β1 > 0 implies that φ̄1 decreases into a negative constant at in-
finity. Also

∫ r
0
s1+β1eu1(s)φ̄i(s)ds > 0 for all r. Consequently for all i in the set

I1 := {i ∈ I; ai1 > 0 },

rφ̄′i(r) ≤ −ai1
∫ r

0

s1+β1eu1(s)φ̄1(s)ds < 0, ∀r > 0.

Therefore φ̄i strictly decreases to a negative constant for all i ∈ I1. We can further
define

I2 := {i ∈ I; aij > 0 for some j ∈ I1. }.

By the same reason as above φ̄i decreases to a negative constant at infinity for all
i ∈ I2. By the irreducibility of A all the components of φ̄ decrease to negative
constants at infinity.
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Now we claim that ᾱ − ε ∈ S for ε > 0 small. To see this, consider φ̄ + tφ1 for
|t| sufficiently small. Recall that φ1

1(0) = 0, thus φ̄1(0) + tφ1
1(0) = 2 + β1. Clearly

φ̄+ tφ1 solves (7). By choosing t positive or negative with |t| small we can make

min
i∈I

φ̄i(0) + tφ1
i (0) = ᾱ− ε > 0.

Since φ̄+ tφ1 is bounded we have∫ ∞
0

eui(φ̄i + tφ1
i )s

βi+1ds = 0, i = 1, ..., n.

Since φ̄i(r) tends to a negative constant as r →∞ and φ1 is bounded, we know for
r large and |t| small ∫ ∞

r

eui(φ̄i(s) + tφ1
i (s))s

βi+1ds < 0.

Consequently ∫ r

0

eui(s)(φ̄i(s) + tφ1
i (s))s

βi+1ds > 0 ∀r > 0.

Thus ᾱ− ε ∈ S for some ε > 0 small, a contradiction to the definition of ᾱ. Lemma
3.2 is established. �

Proof of Proposition 1: We shall consider
u′′i (r) + 1

ru
′
i(r) +

∑
j∈I aijr

βjeuj(r) = 0, 0 < r <∞,∫∞
0
eui(r)rβi+1dr <∞, ∀i ∈ I,

ui(0) = ci, i = 1, ..., n− 1, un(0) = 0.

(15)

Let

Π2 := {σ = (σ1, .., σn); ΛI(σ) = 0, ΛJ(σ) > 0, ∀∅ ( J ( I. }.

Π1 := {C = (c1, .., cn−1); (15) has a solution. }.
Note that by Lemma 2.4 Π1 = Rn−1 if aii > 0 for all i. We claim that the mapping
from Π1 to Π2 is locally one to one. Indeed, let M be the following matrix:

M =

 ∂c1σ1 ... ∂cn−1
σ1

... ... ...
∂c1σn−1 ... ∂cn−1σn−1


We claim that M is nonsingular. We prove this claim by contradiction. Suppose
there exists a non-zero vector D = (d1, ..., dn−1)T such that MD = 0. Then by
setting γ = d1c1 + ...+ dn−1cn−1 we have

∂γσ1 = ∂γσ2 = ... = ∂γσn−1 = 0. (16)

For Π2, ΛI(σ) = 0 reads ∑
i,j∈I

aijσiσj = 2
∑
i∈I

(2 + βi)σi.

By differentiating both sides with respect to γ we have∑
i

(
∑
j

aijσj − 2− βi)∂γσi = 0.
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Since ΛJ(σ) > 0 implies
∑
j aijσj > 2 + βi, (16) implies ∂γσn = 0. Set φi = ∂γui

(i ∈ I), then φ = (φ1, ..., φn) satisfies (7) and

φi(0) = di, i = 1, ..., n− 1, φn(0) = 0.

From ∂γσi = 0 (i ∈ I) we have∫ ∞
0

euiφi(s)s
1+βids = 0, i ∈ I. (17)

As a consequence of (17), φ is bounded. Indeed, integrating (7) from 0 to r

rφ′i(r) = −
∫ r

0

∑
j

aijs
1+βjeuj(s)φj(s)ds

=

∫ ∞
r

aijs
1+βjeuj(s)φj(s)ds = O(r−δ)

for some δ > 0. Therefore φ′(r) = O(r−1−δ), which proves that φi is bounded.
By Lemma 3.2 φi = c(ru′i + 2 + β), then we see immediately that c = 0 because
φn(0) = 0, this is not possible because not all di’s are zero. Therefore we have
proved that M is nonsingular for all C = (c1, ..., cn−1) ∈ Π1.

We further assert that there is one-to-one correspondence between Π1 and Π2.
This is proved in two steps as follows.

Case 1: aii > 0, i ∈ I.
In this case, by Lemma 2.4 Π1 = Rn−1. The mapping from Π1 to Π2 is proper

and locally one to one. Here we claim that Π2 is simply connected. Assuming
this, since Rn−1 and Π2 are simply connected, there is one to one correspondence
between them. Let u = (u1, ..., un) and v = (v1, .., vn) be two radial solutions such
that un(0) = vn(0) = 0,

∫
R2 |x|βieui =

∫
R2 |x|βievi (i ∈ I). Then ui(0) = vi(0) for

i = 1, ..., n−1. By Lemma 2.3 ui ≡ vi for all i ∈ I. Now we prove that Π2 is simply
connected. Indeed, using mi =

∑
j aijσj , ΛI(σ) = 0 can be written as∑

i,j∈I
aij(2 + βi)(2 + βj) =

∑
i,j∈I

aij(mi − 2− βi)(mj − 2− βj). (18)

Therefore Π2 is part of a quadratic surface, the boundary of which is restricted by
ΛJi(σ) = 0 where Ji is I with the index i removed. ΛJi(σ) > 0 reads

mi − 2− βi >
aii
2
σi.

In another word in the coordinate system represented by mi, we use n coordinate
planes to bound the quadratic hypersurface described in (18). Other restrictions
ΛJ > 0, when J is obtained from I with at least two indices removed, do not affect
the topological information of ΛI(σ) = 0. Thus Π2 is a part of the quadratic hyper-
surface in the first quadrant and is therefore simply connected. Proposition 1 is
proved in this case.

Case 2: There exists i0 such that ai0,i0 = 0. We prove this case by a contra-
diction. Suppose ck = (ck1 , ..., c

k
n−1) (k = 1, 2) are two distinct points on Π1 that

correspond to the same energy: let u1, u2 be two solutions corresponding to c1 and
c2 respectively such that∫ ∞

0

eu
1
i (r)r1+βidr =

∫ ∞
0

eu
2
i (r)r1+βidr = σi, i ∈ I.
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Since the matrix

(
∂σ

∂c

)
∈M(n−1)×(n−1) is nonsingular at c1 and c2, there is a one-

to-one mapping between a neighborhood of ck to a neighborhood of σ in Π2. Since
c1 6= c2, we choose the neighborhoods around them to be disjoint.

Now consider a perturbation system
u′′i (r) + 1

ru
′
i(r) +

∑
j∈I(aij + εδij)r

βjeuj = 0, r > 0, i ∈ I,∫∞
0
rβi+1euidr <∞, i ∈ I,

u1(0) = c1, ...un−1(0) = cn−1, un(0) = 0.

(19)

Let uk,ε be the solution to (19) that corresponds to the initial condition ck =

(ck1 , ..., c
k
n−1, 0) (k = 1, 2). Let σk,ε = (σk,ε1 , .., σk,εn ) be defined as

σk,εi =

∫ ∞
0

rβi+1eu
k,ε
i (r)dr, i = 1, .., n.

We claim that

σk,ε = (σ1, .., σn) + ◦(1), k = 1, 2. (20)

and
∂σk,εi
∂cj

=
∂σi
∂cj

+ ◦(1), i = 1, .., n, j = 1, .., n− 1, k = 1, 2. (21)

Assuming (20) and (21) for the moment. Now the matrix ∂c1σ
k,ε
1 . . . ∂cn−1

σk,ε1
...

...
...

∂c1σ
k,ε
n−1 . . . ∂cn−1

σk,εn−1


is non-singular at ck (k = 1, 2) for ε small. On the other hand, σ1,ε and σ2,ε both
satisfy ΛεI(σ

k,ε) :=
∑
i∈I 2(2 + βi)σ

k,ε
i −

∑
i,j∈I(aij + εδij)σ

k,ε
i σk,εj = 0

ΛεJ > 0, 0 & J & I.

(22)

We use Πε to represent the hyper-surface described as above. For σ2,ε = (σ2,ε
1 , .., σ2,ε

n ) ∈
Πε, we can find c1,ε = (c1,ε1 , .., c1,εn−1) such that

c1,εj = c1j + ◦(1), j = 1, 2, .., n− 1

and a solution ū1,ε of (19) with the initial condition (c1,ε1 , .., c1,εn−1, 0) such that∫ ∞
0

rβj+1eū
1,ε
j dr = σ2,ε

j , j = 1, 2, .., n− 1.

After using ΛεI(σ
2,ε) = 0 in (22) we have∫ ∞

0

rβn+1eū
1,ε
n dr = σ2,ε

n .

Then the difference between c1 and c2 implies c1,ε 6= c2 for ε small. A contradiction
to the uniqueness property satisfied by the system (19).

To finish the proof we now verify (20) and (21). Here we require ε ∈ (0, δ0) where
δ0 is so small that the matrix (aij + εδij)n×n is non-singular for all ε ∈ (0, δ0).
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For uk, there exists R0 large such that for r > R0 and some δ > 0,

(uki )′(r)r ≤ −2− βi − 2δ, i = 1, ..., n, k = 1, 2.

For δ0 small we have uk,εi converges uniformly to uki over 0 ≤ r ≤ R0. For r = R0

we have

(uk,εj (r))′r ≤ −(2 + βj + δ) at r = R0, 0 ≤ ε ≤ δ0.

Then by the super-harmonicity of uk,εj it is easy to show

(uk,εj (r))′r ≤ −(2 + βj + δ) for r ≥ R0.

Thus, ∃C > 0 and R1 ≥ R0 such that

rβjeu
k,ε
j (r) ≤ Cr−(2+δ) for r ≥ R1 (23)

Hence for k = 1, 2,

σj
ε =

∫ ∞
0

eu
k,ε
j (r)rβj+1dr =

∫ ∞
0

eu
k
j (r)rβj+1dr + o(1) = σj + ◦(1), j = 1, .., n.

(20) is verified. To show (21)

∂σεi
∂cj

=

∫ ∞
0

rβi+1eu
k,ε
i (r) ∂u

k,ε
i

∂cj
(r)dr, i = 1, .., n, k = 1, 2. (24)

∂uk,ε

∂c satisfies the following linearized equation:

−∆(
∂uk,εi
∂cl

) =

2∑
j=1

(aij + εδij)r
βjeu

k,ε
j
∂uk,εj
∂cl

, i = 1, .., n, l = 1, ..., n− 1.

By Lemma 2.2

|∂u
k,ε
i

∂cl
(r)| ≤ C ln r, r ≥ 2, i = 1, .., n, l = 1, .., n− 1 (25)

where the constant C is independent of ε ∈ (0, δ0). Moreover, for any fixed R > 0,
∂u1,ε

i

∂cl
(r) converges uniformly to

∂u1
i

∂cl
(r) over 0 < r < R with respect to ε. Using

the decay estimates (23) and (25) in (24) we obtain (21) by elementary analysis.
Proposition 1 is proved in all cases. �

3.3. The proof of the second statement of Theorem 1.1. Our proof is based
on the uniqueness result and is completely different from the method employed in
[12]. We divide the proof into two cases according to the diagonal entries of A.
Case one: aii > 0 for all i ∈ I.

In this case, by Lemma 2.4, for any c1, ..., cn−1 ∈ R, there exists a unique finite
energy solution u = (u1, ..un) such that ui(0) = ci for i = 1, .., n− 1 and un(0) = 0.
By Proposition 1 there is a bijection between the initial condition (c1, .., cn−1, 0) and
Π2 (see the notation in the proof of Proposition 1). Thus Theorem 1.1 is proved in
this case.

Case two: There exists i0 ∈ I such that ai0,i0 = 0.
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Let σ ∈ Π2, then for ε > 0 we consider
−∆uεi =

∑
j∈I(aij + εδij)|x|βjeu

ε
j(x), R2,

uεi(0) = cεi , i = 1, ..., n− 1, uεn(0) = 0,∫∞
0
rβi+1eu

ε
i(r)dr = σεi , i ∈ I

where σε = (σε1, ..., σ
ε
n) is a point on the hyper-surface

Πε
2 := {σ = (σ1, ..., σn); σi > 0, ∀i ∈ I, ΛεI(σ) = 0, ΛεJ(σ) > 0, ∀∅ ( J ( I}

such that σε → σ as ε→ 0. Here we recall that ΛεI(σ) is defined as

ΛεI(σ) := 2
∑
i∈I

(2 + βi)σi −
∑
i,j∈I

(aij + εδij)σiσj .

The vector (cε1, ..., c
ε
n−1, 0) is the initial condition corresponding to σε. Now we

claim that

max cεi ≤ C i = 1, ..., n− 1 (26)

for some C > 0 independent of ε. Indeed, if this is not the case, without loss of
generality we assume cε1 is the largest among cεi and tends to infinity. Re-scale uε

according to cε1 to make the maximum of all components at 0 equal to 0. The
re-scaled system has to converge in C2

loc(R2) norm to a partial system. Indeed, the
first component converges because all the components are bounded. The n − th
component tends to −∞ because the initial condition is 0 before the scaling and
all components are non-increasing. Therefore for the limit function v = (v1, ..., vn)
without loss of generality we assume vm+1 = ...vn = 0 for some 1 < m < n. For
i = 1, ...,m we easily observe that

σ̄i :=

∫ ∞
0

rβi+1evi(r)dr ≤ σi, i = 1, ...,m. (27)

The reason is for each fixed R > 0 we have∫ R

0

rβi+1evi(r)dr ≤ σεi + ◦(1), i = 1, ...,m.

Clearly (v1, ..., vm) satisfies
∆vi +

∑m
j=1 aijr

βjevj = 0, i = 1, ...,m,∫∞
0
rβi+1evi(r)dr ≤ σi, i = 1, ..,m.

By Lemma 2.1
m∑
j=1

aij σ̄j > 2 + βi, i = 1, ...m. (28)

We claim that σ̄ = (σ̄1, ..., σn) with σ̄m+1 = ... = σ̄n = 0 satisfies ΛI(σ̄) = 0. Indeed,
let vm+1 = ... = vn ≡ 0 and Hi = 1 if i = 1, ...,m and Hi = 0 for i = m + 1, ..., n.
Then the system for v can be written as

∆vi +

n∑
j=1

aijr
βjHje

vj = 0, i = 1, ..., n.

Apply the standard method to obtain the Pohozaev identity to the system above
we have ΛI(σ̄) = 0. Let J = {1, ...m} we have ΛJ(σ̄) = 0. Let zi = σi − σ̄i. From
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the definition of σ̄i we know that zi ≥ 0 for i = 1, ...,m Since 1 < m < n we have
ΛJ(σ) > 0, ΛJ(σ)− ΛJ(σ̄) > 0 gives∑

i∈J

(
(
∑
j∈J

aijσj − (2 + βi))zi + (
∑
j∈J

aij σ̄j − (2 + βi))zi

)
< 0. (29)

Since
∑
j∈J aij σ̄j > 2 + βi for all i ∈ J , we also have

∑
j∈J aijσj > 2 + βi for all

i ∈ J because σi ≥ σ̄i. Clearly (29) is impossible. (26) is proved. Similarly there is
a lower bound for cε1, ..., c

ε
n−1. As ε→ 0, the uε converges to u that corresponds to

σ. Theorem 1.1 is proved in both cases.

4. Proof of Theorem 1.2. The proof of Proposition 4.1 in [12] can be readily
applied to prove Theorem 1.2. We include it for the convenience of readers.

For λ > 0, let uλi (x1, x2) = ui(2λ − x1, x2). Set Σλ = {x ∈ R2; x1 > λ.} and
Tλ be the boundary of Σλ. The equation for uλ = (uλ1 , ..., u

λ
n) is

∆uλi +
∑
j∈I

aij |xλ|eu
λ
j = 0, i ∈ I (30)

where xλ = (2λ− x1, x2). Set wλi = uλi − ui to be defined in Σλ for λ > 0. For wλi
we have

∆wλi +
∑
j

aij |x|βieξ
λ
j wλj = −

∑
j

aij(|xλ|βj − |x|βj )eu
λ
j

where

eξ
λ
i =

ew
λ
i − ewi

wλi − wi
=

∫ 1

0

ewi+t(w
λ
i −wi)dt.

Since βi ≤ 0 for all i ∈ I,

∆wλi +
∑
j

aij |x|βieξ
λ
j wλj ≤ 0. (31)

Let f = log log(|x|+ 3), then

∆f(x) =
3

r(r + 3)2 log(r + 3)
− 1

(r + 3)2 log2(r + 3)
.

Therefore for any ε > 0, there exists C(ε) > 0 such that

∆f

f
≤ − 1

r2+ε
, r > C(ε). (32)

Let zλi = wλi /f , then the following lemma holds.

Lemma 4.1. There exists R > 0 independent of λ such that for λ > 0, if x0 is a
point where a negative minimum of min{zλ1 , ..zλn} is attained, then x0 ∈ BR.

Proof. ( Proof of Lemma 4.1) From (31) we obtain

∆zλi + 2∇zλi
∇f
f

+ zλi
∆f

f
+
∑
j

aije
ξλj zλj ≤ 0. (33)

Suppose zλi (x0) = minj z
λ
j (x0) < 0 and x0 is where the negative minimum for zλi is

attained. Here we note that the global minimum of zλi should be attained. Indeed,
by Lemma 2.1,

ui(x) = −mi log |x|+ ci +O(|x|−δ)
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when |x| is large. Thus, for λ > 0, since |xλ| < |x|,
wλi (x) = uλi (x)− ui(x) ≥ O(|x|−δ), |x| >> 1.

Thus lim|x|→∞ zλi (x) ≥ 0. Let J = {j ∈ I; zj(x0) ≤ 0}. Here we observe that the
image of the origin is not in J , because of the decay rate of ui. We rewrite (33) as

∆zλi + 2∇zλi
∇f
f

+ zλi
∆f

f
+
∑
j∈J

aije
ξλj zλj ≤ 0. (34)

in a small neighborhood of x0. Then at x0,

∆zλi (x0) ≥ 0, 2∇zλi (x0)
∇f(x0)

f(x0)
= 0.

For j ∈ J , since wλj (x0) ≤ 0, we have uλj (x0) ≤ uj(x0), so if |x0| is large, by Lemma

2.1, eξ
λ
j (x) ∼ |x|−2−δ for x close to x0 and some δ > 0. Thus∑

j∈J
aije

ξλj (x0)zλj (x0) ≤ zi(x0)
∑
j

aije
ξλj (x0) ≤ Czλi (x0)|x0|−2−δ.

On the other hand if |x0| is large

zλi (x0)
∆f(x0)

f(x0)
> |zλi (x0)||x0|−2−ε.

Therefore by choosing ε < δ/2 we see that (34) can not hold if |x0| is large. Lemma
4.1 is established.

By Lemma 4.1 and Lemma 2.1, min{wλ1 , ..., wλn} > 0 in Σλ for λ sufficiently large.
Thus set

λ̄ := inf{λ > 0; min{wλ1 , ..., wλn} > 0 in Σλ }.

Lemma 4.2. λ̄ = 0.

Proof. (Proof of Lemma 4.2) If λ̄ > 0, we first prove that wλ̄i > 0 in Σλ̄ for all i ∈ I.

Indeed, let I0 = {i ∈ I; wλ̄i ≡ 0}. If I0 is not empty, the irreducibility of A implies

all wλ̄i ≡ 0 in Σλ̄. However, not all βi are 0, so for some i ∈ I, we have

∆wλ̄i +
∑
j∈I

aij |x|βjeξ
λ̄
j wλ̄j = −

∑
j∈I

aij(|xλ̄|βj − |x|βj )eu
λ̄
j < 0.

A contradiction.
Next we derive a contradiction to the definition of λ̄. Let λk tend to λ̄ from the

left. Thus λk > 0 for all large k. We can assume that mini∈I w
λk
i < 0 in Σλk because

otherwise, the strong maximum principle implies wλki > 0 in Σλk , a contradiction
to the definition of λ̄. Therefore, let xk be where the minimum of mini∈I w

λ
i be

attained and there is ik ∈ I such that wλkik (xk) = mini∈I,x∈Σλk
wλki < 0. By Lemma

4.1, xk ∈ BR for some R > 0 and all k. Along a subsequence {xk} converges to

x̄ ∈ Σλ̄ such that for some i0 ∈ I, wλ̄i0(x0) = 0. Since we have proved that wλ̄i > 0

for all i ∈ I in Σλ̄, x0 ∈ Tλ̄. However, ∇wik(xk) = 0 leads to ∇wλ̄i0(x0) = 0, a
contradiction to the Hopf Lemma. Lemma 4.2 is established. �

Thus we have proved λ̄ = 0, which leads to

ui(−x1, x2) ≥ ui(x1, x2), ∀x1 ≥ 0, i ∈ I.
Moving the plane from all possible directions we obtain the symmetry of ui. Theo-
rem 1.2 is established.
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5. Uniqueness theorem on the linearized system. In this section we prove
Theorem 1.3. The following lemma describes the projection of u on sin kθ and
cos kθ.

Lemma 5.1. Let φi,k(r) satisfy

φ′′i,k +
1

r
φ′i,k +

∑
j∈I

aijr
βjeuj(r)φj,k −

k2

r2
φi,k = 0, 0 < r <∞ (35)

and

|φi,k(r)| ≤ Crk(1 + r)−2k, ∀r > 0, k ≥ 1. (36)

If there exists f = (f1, .., fn) such that

f ′′i +
1

r
f ′i −

k2

r2
fi +

n∑
j=1

aijr
βjeujfj < 0, r > 0 (37)

and

fi(r) > 0, ∀r > 0, lim
r→0

fi(r)/r
k =∞, lim

r→∞
fi(r)r

k =∞. (38)

Then φik ≡ 0.

Proof. (Proof of Lemma 5.1) We only need to show φik ≤ 0. Suppose this is not the
case. Then because of the assumptions on the decay rates, without loss of generality
we assume

w1(r0) =
φ1,k(r0)

f1(r0)
= max

i,r

φi,k(r)

fi(r)
> 0. (39)

Note that the maximum can be attained because of the decay assumptions on φi,k
and (38). The equation for w1, after simple derivation, is

w′′1 + (
2f ′1
f1

+
1

r
)w′1 + w1(

f ′′1
f1

+
1

r

f ′1
f1
− k2

r2
+ a11r

β1eu1)

+

n∑
j=2

a1jr
βkeuj

φk,j
f1

= 0.

Near r0, w1(r) > 0. Thus in the neighborhood of r0, using (37) we have

w′′1 + (
2f ′1
f1

+
1

r
)w′1 >

n∑
j=2

a1jr
βjeuj

fjw1 − φk,j
f1

.

The left hand side of the above is non-positive when evaluated at r0, while the right
hand side is non-negative. A contradiction. Lemma 5.1 is established.

Proof. (Proof of Theorem 1.3)
Let fi = −u′i(r). Direct computation shows that

f ′′i +
1

r
f ′i −

1

r2
fi +

∑
j

aijr
βjeujfj =

∑
j

aijβjr
βj−1euj .

Since all βi < 0. f = (f1, ..., fn) satisfies (37) and (38) for all k ≥ 2. Let φk =
(φk1 , ..., φ

k
n) be the radial part of the projection onto, say, sin kθ. Then φk satisfies

(35). Since φk is bounded, it is easy to apply standard ODE theorem to obtain that
(36) also holds. Thus all the projections on sin kθ and cos kθ are all zero for β ≤ 0.
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Finally we prove that for the projection on sin θ or cos θ is also zero. Let φ1 =
(φ1,1, .., φ1,n) be the projection of φ on sin θ. Then we have

φ′′1,i +
1

r
φ′1,i −

1

r2
φ1,i +

∑
j

aijr
βjeujφ1,j = 0.

Since φ1 is bounded, the standard ODE theory implies that φ1,i behaves like O(1/r)
at infinity and like O(r) near 0. We shall use f = (−u′1, ...,−u′n) as the function
to majorize φ1. To apply the same argument as in the proof of Lemma 5.1, The
problem is the maximum may tend to 0 or infinity. We first prove that this can not
happen at 0:

φi/fi is strictly increasing near 0 if φi is positive near 0. (40)

Clearly once (40) is proved, φ1 ≡ 0, thus Theorem 1.3 would be established.
Now we prove (40). Let zi = φ1,i/r and Fi = fi/r. Direct computation yields

z′′i +
3

r
z′i +

∑
j

aijr
βjeujzj = 0, r > 0.

and

F ′′i +
3

r
F ′i +

∑
j

aijr
βjeujFj =

∑
j

aijβjr
βj−2euj .

Since φ1,i is positive near 0, zi(0) > 0 (if zi(0) = 0, there is no need to consider this
case, as the maximum can not tend to 0). Easy to see that near 0,

zi(r) = zi(0) +
∑
j

O(rβj+2)

and

Fi(r) = Fi(0) +
∑
j

aij
βj + 2

rβjeuj(0) +
∑
j

O(rβj+1).

Proving φ1,i/fi to be increasing near 0 is the same as proving that zi/Fi is increasing
near 0. Since βi < 0, one immediately sees that zi/Fi is increasing near 0.

Next we prove that zi/Fi is decreasing if zi is positive at infinity. Assume zi(r) =
qi/r

2 +O(r3) at infinity. We have known that, for some δi > 0,

ui(r) = −mi log r + ci +O(r−δi) r > 1.

Thus

eui(r) = ecir−mi +O(r−mi−δi), r >> 1.

We obtain, by integration on the equation for zi, that

z′i(r) = −2qi
r3

+
∑
j

aij
ecjqj

mj − βj − 2
rβj−mj−1 +O(rβj−mj−1−δj ).

zi(r) =
qi
r2
−
∑
j

aij
ecjqj

(mj − βj − 2)(mj − βj)
rβj−mj +

∑
j

O(rβj−mj−δj ).

Correspondingly to compute Fi, we use the equation for ui to obtain

(ru′i(r))
′ = −

∑
j

aijr
βj+1euj = −

∑
j

aijr
1+βj−mjecj +O(r1+βj−mj−δj ).
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Using ru′i(r)→ −mi at infinity, we have

ru′i(r) = −mi +
∑
j

aij
ecj

mj − βj − 2
r2+βj−mj +O(r2+βj−mj−δj ).

Consequently

Fi = −u
′
i(r)

r
=
mi

r2
−
∑
j

aij
ecj

mj − βj − 2
rβj−mj +O(rβj−mj−δj ).

F ′i = −2mi

r3
+
∑
j

aije
cj

mj − βj
mj − βj − 2

rβj−mj−1 +O(rβj−mj−1−δj ).

Our goal is
z′iFi − ziF ′i < 0 near infinity

when zi is positive near infinity. Using the expressions above it is enough to show
if the following is negative:∑

j

aije
cj (−qi +

mi

mj − βj
qj)r

βj−mj−2. (41)

By qi/mi = maxj∈I qj/mj , qi > 0 and βi < 0 for all i ∈ I, we have (41). Therefore
zi/Fi is decreasing near infinity. Theorem 1.3 is proved.

6. Appendix. In this appendix, we prove the ODE lemmas stated in section two.

Proof. (Proof of Lemma 2.1) The proof is standard ( for example, see [10]). We
include it for the convenience of the reader. Let

wi(x) =

∫
R2

(− 1

2π
log |x− y|+ 1

2π
log(1 + |y|))

∑
j

aij |y|βjeuj(y)dy. (42)

Clearly wi is well defined and satisfies

−∆wi(x) =
∑
j

aij |x|βjeuj(x), R2

and
∆(ui − wi) = 0, R2.

By Lemma 4.1 in [24] ui ≤ C on R2. Next we claim that

lim
|x|→∞

wi(x)

log |x|
= −mi.

To see the above, it is easy to obtain for ε > 0, there exist R(ε) >> 1 and R1 >> R
such that for |x| > R1

| 1

2π

∫
BR

− log |x− y|+ log(1 + |y|)
log |x|

∑
j

aij |y|βjeuj −mi| ≤ ε.

Also

|
∫
R2\BR

− log |x− y|+ log(1 + |y|)
log |x|

∑
j

aij |y|βjeujdy| ≤ ε.

Thus ui − wi ≤ C log(1 + |x|), which leads to

ui = wi + Ci (43)

for some Ci ∈ R. Next we claim that

mi − βi > 2 for all i ∈ I. (44)
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Indeed, if this is not the case, there exists i0 ∈ I such that

mi0 − βi0 = min{m1 − β1, ..,mn − βn} ≤ 2.

By (42) and (43) we have

ui0(x) =
1

2π

∫
R2

(− log |x− y|+ log(1 + |y|))
∑
j

ai0j |y|βjeuj(y)dy − C.

Easy to check
− log |x− y|+ log(1 + |y|) ≥ − log(1 + |x|),

thus
ui0(x) ≥ −mi0 log(|x|+ 1)− C ≥ −(2 + βi0) log(|x|+ 1)− C

a contradiction to
∫
R2 |x|βi0 eui0 (x) < ∞. (44) is established. Now ui(x) can be

written as

ui(x) = − 1

2π

∫
R2

log |x− y|
∑
j

aij |y|βjeuj(y)dy + ci. (45)

ci can be determined as in the statement. Finally we derive the error term O(r−δ).
To see this we set

E1 = {y; |y| ≤ |x|/2.} E2 = {y; |y − x| ≤ |x|
2
.} E3 = R2 \ (E1 ∪ E2).

Using eui(y) = O(|y|−mi) in (45) one obtains

− 1

2π

∫
E1

log |x− y|
∑
j

aij |y|βjeuj(y)dy = −mi log |x|+O(|x|−δ).

Similarly by elementary estimates∫
E2∪E3

log |x− y|
∑
j

aij |y|βjeuj(y)dy = O(|x|−δ).

The gradient estimate for ui is obtained by standard estimates. Lemma 2.1 is
established.

Proof. (Proof of Lemma 2.2) Let ψ(t) = (ψ1(t), ..., ψn(t)) be defined as

ψi(t) = φi(e
t), i ∈ I.

Then ψ satisfies

ψ′′i (t) +
∑
j

aije
uj(e

t)+(2+βj)tψj(t) = 0, −∞ < t <∞, i ∈ I.

Let ψn+1 = ψ′1,..., ψ2n = ψ′n and F = (ψ1, .., ψ2n)T , then F satisfies

F′ = MF

where M =

(
0 I
B 0

)
. B is a n × n matrix with Bij = −aijeuj(e

t)+(2+βj)t. For

t > 1, the solution for F is

F(t) = lim
N→∞

eεM(tN )...eεM(t0)F(0). (46)

where t0, ..., tN satisfy tj = jε, j = 0, .., N , ε = t/N . Since ui(e
t) + (2 + βi)t ∼

(−mi+2+βi)t when t is large and mi > 2+βi, we have ‖B‖ ∼ e−δt for some δ > 0
and t large. With this property we further have

‖M‖k ≤ Ce−kδ1t, k = 2, 3, ... t > 0 (47)
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for some δ1 > 0. Using (47) in (46) we have

‖F(t)‖ = O(t), t > 1.

Lemma 2.2 is established .

Proof. (Proof of Lemma 2.3) If a solution u = (u1, ..., un) exists, it would satisfy

ui(r) = ci(0)−
n∑
j=1

aij

∫ r

0

tβj+1(log r − log t)euj(t)dt, i = 1, ..., n.

We first prove the existence of a solution on 0 < r < δ for some small δ > 0 by
iteration: Let u(0) = (0, .., 0) and

u
(k+1)
i (r) = ci(0)−

n∑
j=1

aij

∫ r

0

tβj+1(log r − log t)eu
(k)
j (t)dt, i = 1, ..., n.

For δ > 0 small and r ∈ (0, δ), since βi + 1 > −1, it is easy to see that such a
sequence converges. Therefore the existence of a solution for over (0, δ) is proved.
The existence for r ∈ (δ,∞) clearly holds because of the right hand side is a Lipschitz
function of u. The proof of the uniqueness of the solution is the same as that in
Lemma 2.5 later in the section. Lemma 2.3 is established.

Proof. (Proof of Lemma 2.4) By Lemma 2.3 a solution to (8) exists for r > 0. We
just need to show that ∫ ∞

0

eui(r)rβi+1dr <∞, ∀i ∈ I.

Let vi(t) = ui(e
t) + (2 + βi)t (i ∈ I), then v = (v1, ..., vn) satisfies

v′′i (t) +
∑
j

aije
vj(t) = 0, −∞ < t <∞, i ∈ I.

From the equation for u we have

ru′i(r) = −
∫ r

0

∑
j

aije
uj(s)sβj+1ds < 0, r > 0, i ∈ I.

The last inequality is strict because aij ≥ 0 and not all equal to 0. Consequently
v′i(t) < 2 + βi for t ∈ R. Fix t0 ∈ R we have, for t > t0,

v′i(t) = v′i(t0)−
∫ t

t0

∑
j

aije
vj(s)ds ≤ v′i(t0)− aii

∫ t

t0

evi(s)ds, i ∈ I.

Since aii > 0 there exists t > t0 such that v′i(t) < 0. Choose v′i(t1) = −δ < 0 for
some δ > 0, then we see

vi(t) ≤ vi(t1)− δ(t− t1), t > t1

which is equivalent to ui(r) < (−2 − βi − δ) log r + C for r > et1 . Therefore∫∞
0
eui(r)rβi+1dr <∞. Lemma 2.4 is established.
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Proof. (Proof of Lemma 2.5) The proof is standard, we include it for the convenience
of the reader. Clearly we only need to show that φi ≡ 0 in (0, δ) for δ > 0 small.
Write φi(r) as

φi(r) =−
∫ r

0

1

s

∫ s

0

(
∑
j∈I

aijt
βj+1euj(t)φj(t)dt)ds

=−
∫ r

0

∑
j∈I

aijt
βj+1euj(t)φj(t)(log r − log t)dt

Let α = min{β1, ..., βn} + 1, since all βi > −2 we have α − ε > −1 for some ε > 0
small. For the ε we choose δ > 0 small so that log r − log t < t−ε for r < δ and
t ≤ r. Thus

|φi(r)| ≤ C
∫ r

0

tα−ε
∑
j

|φj(t)|dt, r < δ

for some C. Let φ(r) =
∑
i∈I |φi(r)| and F (r) =

∫ r
0
tα−ε|φ(t)|dt, then

F ′(r)− Crα−εF (r) ≤ 0, F ≥ 0, F (0) = 0.

Since α− ε > −1, F ≡ 0. Lemma 2.5 is established.
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