MGF1107 Homework 2

- 1. Reduce the following
 - (a) $18 \mod 3$
 - (b) $-4 \mod 5$
 - (c) $-15 \mod 60$
 - (d) 80 mod 12
- 2. Fill in the following tables by performing the indicated operation with each number in mod 6.

+	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

х	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

- 3. In the previous problem, the multiplication table should contain zeroes where two nonzero numbers are multiplied. These numbers are called *zero divisors*.
 - (a) List all the zero divisors from the previous problem.
 - (b) Do the integers $\mod 5$, $\mathbb{Z} \mod 5$ have any zero divisors? What about $\mathbb{Z} \mod 7$, $\mathbb{Z} \mod 3$, and $\mathbb{Z} \mod 4$?
 - (c) Can you see any condition on n that determines whether or not there will be zero divisors in $\mathbb{Z} \mod n$?

- 4. Let $A = \{0, 1, 2\}$ and $B = \{0, 1, 4\}$.
 - (a) What is $A \times B$?
 - (b) List the elements of the relation $R = \{(a, b) \in A \times B \mid b = a^2\}$?
- 5. Let C be the set of all cities, and N be the set of all countries. Describe, in set notation (as in the previous problem, part (b), the relation "c is a city located in the country n."
- 6. Let $A = \{1, 2, 3, 4\}, B = \{5, 6, 7, 8\}$, and $C = \{9, 10, 11, 12\}$

Let $R = \{(1,5), (1,8), (3,6), (2,7)\}$ be a relation from A to B. Let $S = \{(5,9), (8,9), (6,11), (7,12)\}$ be a relation from B to C.

- (i) What is $S \circ R$?
- (ii) What is $R^{-1} \circ S^{-1}$?
- (iii) What is $(S \circ R)^{-1}$
- (iv) Which of the 5 relations listed in this question are functions? Explain your answer.
- 7. Suppose R is a relation from A to B and S and T are relations from B to C. Must the following statements be true? Justify your answers with proofs or counterexamples.
 - (a) If $S \subseteq T$ then $S \circ R \subseteq T \circ R$.
 - (b) $(S \cap T) \circ R \subseteq (S \circ R) \cap (T \circ R)$
 - (c) $(S \cap T) \circ R = (S \circ R) \cap (T \circ R)$
 - (d) $(S \cup T) \circ R = (S \circ R) \cup (T \circ R)$
- 8. Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$
 - (a) Is $f = \{(1,5), (2,4), (3,5)\}$ a function from A to B?
 - (b) Is $f = \{(1,5), (2,4), (1,6)\}$ a function from A to B?
- 9. Let $A = \{1, 2, 3\}$ and $B = \{4, 5\}$. How many possible functions are there from A to B? How many possible functions are there from B to A?
- 10. Let $A = \{1, 2, 3, 4\}$ and $B = \{5, 6\}$. How many possible functions are there from A to B? How many possible functions are there from B to A?
- 11. Circle the figures below that are functions, and if they are not functions explain why.

