## MGF1107 Homework 2

1. Reduce the following
(a) $18 \bmod 3$
(b) $-4 \bmod 5$
(c) $-15 \bmod 60$
(d) $80 \bmod 12$
2. Fill in the following tables by performing the indicated operation with each number in $\bmod 6$.

| + | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |


| x | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |

3. In the previous problem, the multiplication table should contain zeroes where two nonzero numbers are multiplied. These numbers are called zero divisors.
(a) List all the zero divisors from the previous problem.
(b) Do the integers $\bmod 5, \mathbb{Z} \bmod 5$ have any zero divisors? What about $\mathbb{Z} \bmod 7, \mathbb{Z} \bmod 3$, and $\mathbb{Z} \bmod 4$ ?
(c) Can you see any condition on $n$ that determines whether or not there will be zero divisors in $\mathbb{Z} \bmod n$ ?
4. Let $A=\{0,1,2\}$ and $B=\{0,1,4\}$.
(a) What is $A \times B$ ?
(b) List the elements of the relation $R=\left\{(a, b) \in A \times B \mid b=a^{2}\right\}$ ?
5. Let $C$ be the set of all cities, and $N$ be the set of all countries. Describe, in set notation (as in the previous problem, part (b), the relation " $c$ is a city located in the country $n$."
6. Let $A=\{1,2,3,4\}, B=\{5,6,7,8\}$, and $C=\{9,10,11,12\}$

Let $R=\{(1,5),(1,8),(3,6),(2,7)\}$ be a relation from $A$ to $B$. Let $S=$ $\{(5,9),(8,9),(6,11),(7,12)\}$ be a relation from $B$ to $C$.
(i) What is $S \circ R$ ?
(ii) What is $R^{-1} \circ S^{-1}$ ?
(iii) What is $(S \circ R)^{-1}$
(iv) Which of the 5 relations listed in this question are functions? Explain your answer.
7. Suppose $R$ is a relation from $A$ to $B$ and $S$ and $T$ are relations from $B$ to $C$. Must the following statements be true? Justify your answers with proofs or counterexamples.
(a) If $S \subseteq T$ then $S \circ R \subseteq T \circ R$.
(b) $(S \cap T) \circ R \subseteq(S \circ R) \cap(T \circ R)$
(c) $(S \cap T) \circ R=(S \circ R) \cap(T \circ R)$
(d) $(S \cup T) \circ R=(S \circ R) \cup(T \circ R)$
8. Let $A=\{1,2,3\}$ and $B=\{4,5,6\}$
(a) Is $f=\{(1,5),(2,4),(3,5)\}$ a function from $A$ to $B$ ?
(b) Is $f=\{(1,5),(2,4),(1,6)\}$ a function from $A$ to $B$ ?
9. Let $A=\{1,2,3\}$ and $B=\{4,5\}$. How many possible functions are there from $A$ to $B$ ? How many possible functions are there from $B$ to $A$ ?
10. Let $A=\{1,2,3,4\}$ and $B=\{5,6\}$. How many possible functions are there from $A$ to $B$ ? How many possible functions are there from $B$ to $A$ ?
11. Circle the figures below that are functions, and if they are not functions explain why.


