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Abstract

In this paper, a model for the use of heroin with treat-age is formulated based on

the principles of mathematical epidemiology. The model accounts for relapse rate that

depends on how long the host has been in treatment for heroin addiction. An explicit

formula for the reproductive number of the heroin spread is obtained. By using the

method of Lyapunov functional, we established the dynamical properties of the heroin

epidemic model, and the results show that the global dynamics of the model is completely

determined by the basic reproduction number. It is shown that the drug-free equilibrium

is locally and globally asymptotically stable if the basic reproduction number is less than

one. In addition, the heroin spread system is uniform persistence and the unique drug

spread equilibrium is locally and globally asymptotically stable if the basic reproduction

number is greater than one.
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1 Introduction

Heroin is an opiate drug that is synthesized from morphine, a naturally occurring substance

extracted from the seed pod of the Asian opium poppy plant. Heroin usually appears as a

white or brown powder or as a black sticky substance, known as “black tar heroin”[1]. Over

the past two decades, China has faced a dramatic increase in illicit drug abuse accompanying
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rapid economic reform and development[2]. In 2000, heroin still was the first choice among

drug users (rising from 83.4 percent in 1993 to 95.9 percent in 2000), and its most frequent

routes of delivery were intravenous injection (25 percent) and inhalation[3]. Heroin users are

at high risk for addiction that it is estimated that about 23 percent of individuals who use

heroin become dependent on it. The spread of heroin habituation and addiction presents

many of the well-known phenomena of epidemics, including rapid diffusion and clear geo-

graphic boundaries[4, 5, 6]. In addition to their deleterious somatic and psychological effects,

heroin abuse and dependence constitute one of the most important modes of transmitting

Human Immunodeficiency Virus (HIV) and Hepatitis C Virus (HCV) [7, 8, 9]. Statistical

information for drug abuse, including heroin abuse, is given by various governmental agen-

cies, including National Institute on Drug Abuse in the US. But it is unrealistic to repeat the

experiment on the human body for obtaining the statistic data. However, mathematical mod-

elling plays important role in understanding and combating drug addiction problems. Models

are very useful tools to predict how classes of drug users behave, and provide suggestions for

treatment strategies.

In recent years, many mathematical models have been developed to describe the heroin

epidemic ([10-13]). In these models, the population is devided into three classes, namely sus-

ceptibles, heroin drug users not in treatment, and heroin drug users undergoing treatment.

These classes are denoted by S(t), U1(t) and U2(t), respectively. All prior heroin epidemic

models are ODE models and address treatment strategies. The authors in [10, 11] considered

a susceptible, untreated used, treated users model with standard incidence rate and showed

that the steady states of the model of heroin epidemics are stable. Wang et al in[12] consid-

ered the mass action incidence rate and proved that the drug-free equilibrium and the unique

endemic equilibrium is globally asymptotically stable under some conditions. Samanta [13]

considered a nonautonomous heroin epidemic model with time delay. However, all these stud-

ies did not consider the influence of the treat-age for the heroin users during the treatment.

In fact, studies, such as Elvebac et al. in [14], suggest that disease transmission models with

age-dependent rates are more realistic than those that do not consider age-dependent rates.

To address the need to involve treat-age in heroin studies, in this paper, we present a heroin

epidemic model with treat-age, based on the principles of mathematical epidemiology. The

model incorporates relapse rate that depend on how long the host has been in treatment. We

analyze the existence and stability of the equilibria of the model and characterize the thresh-

old conditions of the heroin epidemic model with an explicit formula for the reproductive

number. It is shown that the existence, local and global asymptotical stability of equilibria

is completely determined by the basic reproduction number. By using a class of global Lya-
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punov functionals we obtain the dynamics of the heroin epidemic model. It is shown that

the drug-free equilibrium is globally asymptotically stable if the basic reproduction number

is less than one. In addition, the heroin spread system is uniform persistent and the unique

drug spread equilibrium is globally asymptotically stable if the basic reproduction number is

greater than one.

The paper is organized as follows. In the next section we mainly formulate the heroin

epidemic model with treat-age, present the basic reproduction number, investigate the exis-

tence of the equilibrium, and then state the main results of the paper. In order to prove the

results on the global stability of the drug spread equilibrium, in section 3 we present some

preliminary results about the uniform persistence of the heroin spread system and about the

existence of global attractors. In addition, the local asymptotic stability of the drug-free

equilibrium and the drug spread equilibrium is also discussed in this section. In section 4 the

proof of the results on the global asymptotic stability of the drug-free equilibrium and drug

spread equilibrium is investigated by the use of a appropriate Lyapunov functional. Finally,

we summarize our results in Section 5.

2 Model formulation and main results

On the premise that drug use follows a process that can be modelled in a similar way

to the modelling of disease[15, 16], a mathematical epidemiological treatment model of drug

use may yield insights on the progression through the drug users career, from initiation to

habitual use, treatment, relapse and eventual recovery. It is of course critical to understand,

insofar as it is possible, the process being modelled. Information from the ROSIE study [17]

and feedback from professionals in addiction-related areas were fundamental in developing

the model. In order to investigate the influence of the treat-age on the spread of the heroin

epidemic, we divide the population into three mutually-exclusive compartments (subgroups),

namely, the susceptibles, the drug users not in treatment and the drug users in treatment,

denoted by S(t), U1(t) and U2(θ, t), respectively. Here the parameter θ denotes the treat-age

of the heroin drug users undergoing treatment at time t. On the one hand, we assume that

drug users not in treatment are only infectious to susceptibles and drug users in treatment

are not infectious to susceptibles. Moreover, drug users would return to untreated drug user

class after cessation of a drug treatment programme. On the other hand, we assume that

every individual in the population has an equal chance of encountering any other individual

and all members of the population are equally susceptible to drug addiction. Motivated by
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[10], we formulate the heroin epidemic model with treat-age as follows:




dS(t)
dt

= Λ− βS(t)U1(t)− µS(t),

dU1(t)
dt

= βS(t)U1(t)−
(
µ + δ1 + p

)
U1(t) +

∫ ∞

0
k(θ)U2(θ, t)dθ,

∂U2(θ, t)
∂θ

+
∂U2(θ, t)

∂t
= −(

µ + δ2 + k(θ)
)
U2(θ, t),

(2.1)

with the following boundary and initial conditions:
{

U2(0, t) = p U1(t),

S(0) = S0, U1(0) = U0
1 , U2(θ, 0) = U0

2 (θ),
(2.2)

where S0, U0
1 ∈ R+, and U0

2 (θ) ∈ L1
+

(
(0,+∞), R

)
.

The meanings of all parameters in the above model are as follows:

• S(t): the number of susceptible individuals in the population at time t;

• U1(t): the number of drug users not in treatment; initial and relapsed drug users;

• U2(θ, t): the number of drug users in treatment with age θ at time t;

• Λ: the number of individuals in the general population entering the susceptible popu-

lation;

• β: the rate of becoming a drug user;

• p: the rate of drug users who enter treatment;

• δ1: a removal rate that includes drug-related deaths of users not in treatment and a

spontaneous recovery rate; individuals not in treatment who stop using drugs but are no

longer susceptible;

• δ2: a removal rate that includes the drug-related deaths of users in treatment and a rate

of successful “cure” that corresponds to recovery to a drug free life and immunity to drug

addiction for the duration of the modelling time period;

• k(θ): the probability of a drug user in treatment with treat-age θ relapsing to untreated

use;

• µ: the natural death rate of the general population.

All parameters are nonnegative, Λ > 0, and µ > 0. We further assume that the parameter-

functions k(θ) belongs to L∞+
(
(0,∞),R

) \ {0L∞}.
Define the space of functions

X = R× R× L1(0,∞), X+ = R+ × R+ × L1
+(0,∞),
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where L1
+(0,∞) is the space of functions on (0,∞) that are nonnegative and Lebesgue inte-

grable, equipped with the norm

∣∣∣∣(S,U1, U2(θ))
∣∣∣∣

X+
=

∣∣S∣∣ +
∣∣U1

∣∣ +
∫ ∞

0

∣∣U2(θ)
∣∣dθ.

The norm has the biological interpretation of giving the total population size.

The initial conditions in (2.2) that belong to the positive cone X+ can be rewritten as

(
S0, U0

1 , U0
2 (·)) ∈ X+.

Using standard methods, we can verify the existence and uniqueness of solutions to model

(2.1) with the boundary and initial conditions (2.2) (see Webb [18] and Iannelli [19]). More-

over, we can show that all solutions of system (2.1) with nonnegative initial conditions (2.2)

that belong to the positive cone X+ will remain nonnegative and bounded for all t > 0.

Letting

U2(t) =
∫ ∞

0
U2(θ, t)dθ, and N(t) = S(t) + U1(t) + U2(t).

Adding all equations of system (2.1) we have

d

dt

(
S(t) + U1(t) +

∫ ∞

0
U2(θ, t)dθ

)

=
dS(t)

dt
+

dU1(t)
dt

+
∫ ∞

0

∂U2(θ, t)
∂t

dθ

=
(
Λ− βS(t)U1(t)− µS(t)

)
+

(
βS(t)U1(t)−

(
µ + δ1 + p

)
U1(t) +

∫ ∞

0
k(θ)U2(θ, t)dθ

)

+
∫ ∞

0

{
−∂U2(θ, t)

∂θ
− (

µ + δ2 + k(θ)
)
U2(θ, t)

}
dθ

= Λ− µ

(
S(t) + U1(t) +

∫ ∞

0
U2(θ, t)dθ

)
− pU1(t)− U2(θ, t)

∣∣∣
θ=∞

θ=0
− δ1U1(t)

−δ2

∫ ∞

0
U2(θ, t)dθ

≤ Λ− µ

(
S(t) + U1(t) +

∫ ∞

0
U2(θ, t)dθ

)
.

So we have
dN(t)

dt
≤ Λ− µN(t), (2.3)

and therefore

lim sup
t→+∞

N(t) ≤ Λ
µ

.

Furthermore, if N(t) ≤ Λ
µ

is satisfied for some t = t0 ∈ R, then it is satisfied for all t ≥ t0.

Therefore, the system (2.1) is point dissipative.
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Denote

S =
{

(S,U1, U2) ∈ X+

∣∣∣ S(t) + U1(t) +
∫ ∞

0
U2(θ, t)dθ ≤ Λ

µ

}
.

We know S attracts all points in X. Then the set S is maximum positively invariant set for

system (2.1).

Finally, since the exit rate from the drug users in treatment compartment is given by

µ+ δ2 +k(θ), then the probability of still being the drug users in treatment after θ time units

is given by

Π(θ) = e−
R θ
0

(
µ+δ2+k(σ)

)
dσ.

Therefore, K =
∫∞
0 k(θ)Π(θ)dθ is the probability of relapsing the drug users in treatment

class.

In order to find any positive equilibria, we first determine the basic reproduction number

R0 of the heroin epidemic model [20], which is given by the following expression:

R0 =
β · Λ

µ

(µ + δ1 + p)− pK
. (2.4)

To interpret formula (2.4) as a secondary number of heroin users produced by one heroin

user, that is R0, we note that the average time in the drug users not in treatment class on

the first pass is 1
µ+δ1+p and the probability of surviving this class is p

µ+δ1+p . Since K is the

probability of relapsing the drug users in treatment class, the total average time in the drug

users not in treatment class (on multiple passes) is

1
µ + δ1 + p

[
1 +

p

µ + δ1 + p
·K +

(
p

µ + δ1 + p
·K

)2

+ · · ·
]

=
1

(µ + δ1 + p)− pK
.

(2.5)

Multiplying this by β ·Λµ givesR0, which is the average number of new drug users produced by

a typical drug user not in treatment introduced into an entirely susceptible population[21, 22].

Thus, R0 is the basic reproduction number which acts as a threshold as is shown in the

following result.

Now let us investigate the existence of the steady states of system (2.1). For any steady

state
(
S∗, U∗

1 , U∗
2 (θ)

)
of system (2.1), it should satisfy the following equalities:





0 = Λ− βS∗U∗
1 − µS∗,

0 = βS∗U∗
1 −

(
µ + δ1 + p

)
U∗

1 +
∫ ∞

0
k(θ)U∗

2 (θ)dθ,

dU∗
2 (θ)
dθ

= −(
µ + δ2 + k(θ)

)
U∗

2 (θ),

U∗
2 (0) = pU∗

1 .

(2.6)
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Solving the third equation of (2.6), we get

U∗
2 (θ) = U∗

2 (0)e−
R θ
0 (µ+δ2+k(σ))dσ = pU∗

1 Π(θ). (2.7)

If U∗
1 = 0, then we have U∗

2 (θ) = 0 from (2.7). From the first equation of (2.6), we obtain

S∗0 =
Λ
µ

.

Obviously, system (2.1) always has the drug-free equilibrium, in which there are no drug

users present, given by

E0 =
(
S∗0 , 0, 0

)
, S∗0 =

Λ
µ

. (2.8)

If U∗
1 6= 0, substituting (2.7) into the second equation of (2.6), we have

βS∗ =
(
µ + δ1 + p

)− pK, (2.9)

or

S∗ =

(
µ + δ1 + p

)− pK

β
=

1
R0

· Λ
µ

. (2.10)

Substituting the result into the first equation of (2.6), yields

U∗
1 =

Λ− µS∗

βS∗
=

µ

β
· (R0 − 1). (2.11)

It can be easily seen from the expressions of S∗, U∗
1 and U∗

2 (θ) that system (2.1) has a unique

drug spread equilibrium E∗(S∗, U∗
1 , U∗

2 (θ)
)

if and only ifR0 > 1. Summarizing the discussions

above, we have the following theorem.

Theorem 2.1 The system (2.1) can have up to two equilibria. More precisely, we have

(1) The drug-free equilibrium E0

(Λ
µ

, 0, 0
)

always exists.

(2) If R0 > 1, there exists a unique drug spread equilibrium E∗(S∗, U∗
1 , U∗

2 (θ)
)
, where

S∗ =
1
R0

· Λ
µ

, U∗
1 =

µ

β
· (R0 − 1

)
, U∗

2 (θ) = pU∗
1 Π(θ).

In order to state the main results of the paper, we set

θ̄ = inf
{

θ :
∫ ∞

θ
k(θ)dθ = 0

}
.

Since the functions k(θ) belong to L∞+
(
(0,+∞), R

) \ {
0L∞

}
, we have θ̄ > 0. Furthermore,

we let

M̂0 :=

{(
U1(t)

U2(·, t)
)
∈ R+ × L+

(
(0,+∞), R

)
: U1(t) > 0 or

∫ θ̄

0
U2(θ, t)dθ > 0

}
,
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and define

M0 := R+ × M̂0, ∂M0 := R+ × R+ × L+

(
(0,+∞), R

) \ M0.

Now we are able to state the main results of the paper.

Theorem 2.2 If R0 < 1, then the drug-free equilibrium E0(
Λ
µ

, 0, 0) is the unique equi-

librium of system (2.1), and it is globally stable.

Theorem 2.3 Assume that R0 > 1, then the drug-free equilibrium E0(
Λ
µ

, 0, 0) is globally

asymptotically stable in ∂M0, and the unique drug spread equilibrium E∗(S∗, U∗
1 , U∗

2 (θ)
)

of

system (2.1) is globally asymptotically stable in M0.

3 Preliminary results and uniform persistence

In this section, we first reformulate system (2.1) as a Volterra equation by use of Volterra

formulation (see Webb [18] and Iannelli [19]). Then we reformulate system (2.1) as a non-

densely defined semilinear Cauchy problem in order to apply integrated semigroup theory (see

Thieme [23]). Finally, by using the uniform persistence theory for abstract dynamical systems,

we present some results about uniform persistence and the existence of global attractors.

3.1 Volterra formulation

The Volterra integral formulation of age-structured models has been used successfully in

various contexts and provides explicit (or implicit) formulas for the solutions of age-structure

models [24].

By using Volterra formulation, we integrate along the characteristic lines t − θ = const.

for all t > 0, and solve the terms U2(θ, t) as the following expressions:

U2(θ, t) =





U2(t− θ, 0)Π(θ) = pU1(t− θ)Π(θ), t > θ,

U0
2 (θ − t)

Π(θ)
Π(θ − t)

, t < θ.
(3.1)

Thus the system (2.1) with the boundary and initial conditions (2.2) can be rewritten as the

following Volterra type equations:




dS(t)
dt

= Λ− βS(t)U1(t)− µS(t),

dU1(t)
dt

= βS(t)U1(t)−
(
µ + δ1 + p

)
U1(t) +

∫ ∞

0
k(θ)U2(θ, t)dθ,

U2(θ, t) =





pU1(t− θ)Π(θ), t > θ,

U0
2 (θ − t)

Π(θ)
Π(θ − t)

, t < θ.

(3.2)
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3.2 Integrated semigroup formulation

We now use the approach introduced by Thieme [23] to reformulate the system (2.1)

with the boundary and initial conditions (2.2) as a semilinear Cauchy problem. In order to

take into account the boundary condition, we extend the state space by considering

X = R× R× Y, where Y = R× L1
(
(0,+∞),R

)

endowed with the usual product norm, and set

X0 = R× R× Y0, X+ = R+ × R+ × Y+,

where

Y0 =
{
0
}× L1

(
(0,+∞),R

)
, Y+ = R+ × L1

+

(
(0,+∞),R

)
,

and

X0+ = X0 ∩ X+.

We consider the linear operator A : Dom(A) ⊂ X → X defined by

A




S

U1(
0
U2

)


 =




−µS

−(
µ + δ1 + p

)
U1( −U2(0)

−U ′
2 −

(
µ + δ2 + k(θ)

)
U2

)


 .

with

Dom(A) = R× R× {
0
}×W 1,1

(
(0,+∞),R

)
,

where W 1,1 is a Sobolev space, and we define the non-linear map F : X0 → X by

F




S

U1(
0
U2

)


 =




Λ− βS(t)U1(t)

βS(t)U1(t) +
∫ ∞

0
k(θ)U2(θ, t)dθ

(
pU1(t)
0L1

)




.

Then by defining

v(t) =




S(t)
U1(t)(

0
U2(·, t)

)


 ,

we can reformulated the PDE problem (2.1) with the boundary and initial conditions (2.2)

as the following abstract Cauchy problem:

dv(t)
dt

= Av(t) + F (v(t)) (3.3)

for t ≥ 0 and v(0) = v0 ∈ X0+.
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By using the results in Thieme [23] and Magal [25] (see Magal and Ruan [26] for more

results), we derive the existence and the uniqueness of the semiflow
{
U(t)

}
t≥0

on X0+ gener-

ated by system (3.3). By identifying
(
S(t), U1(t), 0, U2(·, t)

)
with

(
S(t), U1(t), U2(·, t)

)
, it can

be proved that this semiflow coincides with the one generated by using the Volterra integral

formulation. Moreover, by using (2.3), we deduce that the set

B̃ =








S

U1(
0
U2

)


 ∈ X0+ : S + U1 +

∫ ∞

0
U2(θ)dθ ≤ Λ

µ





is positively invariant absorbing set under this semiflow
{
U(t)

}
t≥0

on X0+; that is to say that

U(t)B̃ ⊆ B̃,

and for each x =
(
S0, U0

1 , 0, U0
2 (θ)

) ∈ X0+,

d
(
U(t)x,B

)
:= inf

y∈B̃

∥∥U(t)x− y
∥∥ → 0, as t → 0.

It follows that the semiflow
{
U(t)

}
t≥0

is bounded dissipative on X0+(see Hale [27]). Further-

more, the semiflow
{
U(t)

}
t≥0

is asymptotically smooth (see Webb [18], Magal and Thieme

[28], Thieme and Vrabie [29]). As a consequence of the results on the existence of global

attractors in Hale [27], we obtain the following theorem.

Theorem 3.1 The system (3.3) generates a unique continuous semiflow
{
U(t)

}
t≥0

on X0+

that is asymptotically smooth and bounded dissipative. Furthermore, the semiflow
{
U(t)

}
t≥0

has a global attractor A in X0+ which attracts the bound sets of X0+.

3.3 Local stability of the equilibria

In this subsection, we mainly prove the local stability of the equilibria whose existence

have been stated in Theorem 2.1. One can refer to some relevant references [30, 31, 32, 33]

for the analysis of local stability.

First, let us investigate the local stability of the drug-free equilibrium E0 and we have

the following Theorem 3.2.

Theorem 3.2 The drug-free equilibrium E0 is locally asymptotically stable if R0 < 1, and

unstable if R0 > 1.

Proof. Introducing the perturbation variables, i.e., letting

S(t) =
Λ
µ

+ x(t), U1(t) = y(t), U2(θ, t) = z(θ, t),
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and linearizing the system (2.1) at the point E0, we obtain the following system




dx(t)
dt

= −β
Λ
µ

y(t)− µx(t),

dy(t)
dt

= β
Λ
µ

y(t)− (
µ + δ1 + p

)
y(t) +

∫ ∞

0
k(θ)z(θ, t)dθ,

∂z(θ, t)
∂θ

+
∂z(θ, t)

∂t
= −(

µ + δ2 + k(θ)
)
z(θ, t),

z(0, t) = py(t).

(3.4)

To analyze the asymptotic behavior around E0, we look for solutions of the form

x(t) = x̄eλt, y(t) = ȳeλt, z(θ, t) = z̄(θ)eλt,

where x̄, ȳ and z̄(θ) are to be determined. Thus, we can consider the following eigenvalue

problem: 



(λ + µ)x̄ = −β
Λ
µ

ȳ,

(
λ + µ + δ1 + p

)
ȳ = β

Λ
µ

ȳ +
∫ ∞

0
k(θ)z̄(θ)dθ,

dz̄(θ)
dθ

= −(
λ + µ + δ2 + k(θ)

)
z̄(θ),

z̄(0) = pȳ.

(3.5)

Solving the third equation of (3.5), we get

z̄(θ) = z̄(0)e−λθ · e−
R θ
0 (µ+δ2+k(σ))dσ = pȳ · e−λθ ·Π(θ). (3.6)

Substituting (3.6) into the second equation of (3.5) and cancelling ȳ (for ȳ 6= 0), we get

p

∫ ∞

0
k(θ)e−λθΠ(θ)dθ = λ + µ + δ1 + p− β

Λ
µ

. (3.7)

We also have

1 =
β

Λ
µ

λ + µ + δ1 + p− p

∫ ∞

0
k(θ)e−λθΠ(θ)dθ

. (3.8)

Define a function H(λ) to be the right-hand side above. Obviously, H(λ) is a continuously

differentiable function with limλ→∞H(λ) = 0. By direct computing, it is easy to show that

H′(λ) < 0, that is, H(λ) is a decreasing function of λ. Hence, any real solution of Eq.(3.8) is

negative if H(0) < 1, and positive if H(0) > 1. Hence, if H(0) > 1, the drug-free equilibrium

is unstable.

11



Next, we show that Eq.(3.8) has no complex solutions with nonnegative real part if

H(0) < 1. Suppose H(0) < 1. Assume that λ = a1 + ib1 (a1, b1 ∈ R, i is the imaginary

unit ) is a complex solution of equation (3.8) with a1 > 0. Then

1 = |H(λ)| ≤ H(a1) ≤ H(0) < 1.

This is impossible. Thus, every solution of Eq.(3.8) must have a negative real part. Therefore,

the drug-free equilibrium E0 is locally asymptotically stable if H(0) < 1.

Noticing that H(0) = R0, we conclude that the drug-free equilibrium E0 is asymptotically

stable if R0 < 1 and is unstable if R0 > 1. This completes the proof of Theorem 3.2. ¤
Now we investigate the local stability of the drug spread equilibrium E∗. We have the

following result.

Theorem 3.3 The drug spread equilibrium E∗ is locally asymptotically stable if R0 > 1.

Proof. Introducing the perturbation variables, i.e., letting:

S(t) = x(t) + S∗, U1(t) = y(t) + U∗
1 , U2(θ, t) = z(θ, t) + U∗

2 (θ),

and linearizing the system (2.1) about E∗, we obtain the following system




dx(t)
dt

= −βS∗y(t)− βU∗
1 x(t)− µx(t),

dy(t)
dt

= βS∗y(t) + βU∗
1 x(t)− (

µ + δ1 + p
)
y(t) +

∫ ∞

0
k(θ)z(θ, t)dθ,

∂z(θ, t)
∂θ

+
∂z(θ, t)

∂t
= −(

µ + δ2 + k(θ)
)
z(θ, t),

z(0, t) = py(t).

(3.9)

To analyze the asymptotic behavior around E∗, we look for solutions of the form

x(t) = x̄eλt, y(t) = ȳeλt, z(θ, t) = z̄(θ)eλt,

where x̄, ȳ and z̄(θ) are to be determined. Thus, we can consider the following eigenvalue

problem: 



(λ + µ)x̄ = −βS∗ȳ − βU∗
1 x̄,

(
λ + µ + δ1 + p

)
ȳ = βS∗ȳ + βU∗

1 x̄ +
∫ ∞

0
k(θ)z̄(θ)dθ,

dz̄(θ)
dθ

= −(
λ + µ + δ2 + k(θ)

)
z̄(θ),

z̄(0) = pȳ.

(3.10)

Solving the third equation of (3.10), we get

z̄(θ) = z̄(0)e−λθ · e−
R θ
0 (µ+δ2+k(σ))dσ = pȳ · e−λθ ·Π(θ). (3.11)
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Solving the first equation of (3.10), we get

x̄ =
−βS∗

λ + µ + βU∗
1

ȳ. (3.12)

Substituting (3.11) and (3.12) into the second equation of (3.10) and cancelling ȳ (for ȳ 6= 0),

we get

p

∫ ∞

0
k(θ)e−λθΠ(θ)dθ = λ + µ + δ1 + p− βS∗ · λ + µ

λ + µ + βU∗
1

. (3.13)

We also have

1 =
βS∗ · λ + µ

λ + µ + βU∗
1

λ + µ + δ1 + p− p

∫ ∞

0
k(θ)e−λθΠ(θ)dθ

. (3.14)

If the real part Reλ ≥ 0, taking the absolute value of the right hand side (RHS) of (3.14) and

using the formula in (2.9), we have

|RHS| ≤
βS∗

∣∣∣∣
λ + µ

λ + µ + βU∗
1

∣∣∣∣
∣∣∣∣λ + µ + δ1 + p− p

∫ ∞

0
k(θ)e−λθΠ(θ)dθ

∣∣∣∣

<
βS∗∣∣∣∣µ + δ1 + p− p

∫ ∞

0
k(θ)Π(θ)dθ

∣∣∣∣

=
βS∗

µ + δ1 + p− pK

= 1.

This is impossible, implying that Eq.(3.14) cannot have a root with nonnegative real part.

There we have shown that the unique drug spread equilibrium E∗ is locally asymptotically

stable if R0 > 1. This completes the proof of Theorem 3.3. ¤

3.4 Uniform persistence

In order to define the invariant sets of the uniform persistence analysis, we define

M̃ := R+ × {0} × M̂, ∂M̃ := X0+\M̃. (3.15)

Theorem 3.4 ∂M̃ is positively invariant under the semiflow
{
U(t)

}
t≥0

generated by

system (3.3) on X0+. Moreover, the drug-free equilibrium E0

(
S∗0 , 0, 0, 0L1

)
is globally asymp-

totically stable for the semiflow
{
U(t)

}
t≥0

restricted to ∂M̃.
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Proof. Let
(
S0, U0

1 , 0, U0
2 (·)) ∈ ∂M̃. Then

(
U0

1 , U0
2 (·)) ∈ R+ × L1

+

(
(0,+∞),R

) \ M̂ and

we have 



dU1(t)
dt

= βS(t)U1(t)−
(
µ + δ1 + p

)
U1(t) +

∫ ∞

0
k(θ)U2(θ, t)dθ,

∂U2(θ, t)
∂θ

+
∂U2(θ, t)

∂t
= −(

µ + δ2 + k(θ)
)
U2(θ, t),

U2(0, t) = p U1(t),

U1(0) = 0, U2(θ, 0) = U0
2 (θ).

(3.16)

Since S(t) ≤ Λ
µ

, it follows that

U1(t) ≤ Û1(t), U2(θ, t) ≤ Û2(θ, t), (3.17)

where 



dÛ1(t)
dt

= β
Λ
µ

Û1(t)−
(
µ + δ1 + p

)
Û1(t) +

∫ ∞

0
k(θ)Û2(θ, t)dθ,

∂Û2(θ, t)
∂θ

+
∂Û2(θ, t)

∂t
= −(

µ + δ2 + k(θ)
)
Û2(θ, t),

Û2(0, t) = p Û1(t),

Û1(0) = 0, Û2(θ, 0) = U0
2 (θ).

(3.18)

By use of Volterra formulation, we integrate along the characteristic lines t− θ = const. for

all t > 0, and solve the terms Û2(θ, t) as the following expressions:

Û2(θ, t) =





Û2(t− θ, 0)Π(θ) = pÛ1(t− θ)Π(θ), t > θ,

Û0
2 (θ − t)

Π(θ)
Π(θ − t)

, t < θ.
(3.19)

Substituting the above expression into the first equation of (3.18) yields

dÛ1(t)
dt

= β
Λ
µ

Û1(t)−
(
µ + δ1 + p

)
Û1(t) + p

∫ t

0
k(θ)Û1(t− θ)Π(θ)dθ + F (t), (3.20)

where
F (t) =

∫ ∞

t
k(θ)Û0

1 (θ − t)
Π(θ)

Π(θ − t)
dθ.

Since
(
U0

1 , U0
2 (·)) ∈ R+ × L1

+

(
(0,+∞),R

) \ M̂ and k(θ) ∈ L1
+

(
(0,+∞),R

) \ {
0L∞

}
, we can

deduce that F (t) ≡ 0 for all t ≥ 0. Accordingly, the system





dÛ1(t)
dt

= β
Λ
µ

Û1(t)−
(
µ + δ1 + p

)
Û1(t) + p

∫ t

0
k(θ)Û1(t− θ)Π(θ)dθ

Û1(0) = 0

(3.21)
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has a unique solution Û1(t) = 0. Consequently, it follows from (3.19) that Û2(θ, t) = 0 for

0 ≤ θ ≤ t. For t < θ, we have

∥∥Û2(θ, t)
∥∥

L1 =
∥∥∥∥Û0

2 (θ − t)
Π(θ)

Π(θ − t)

∥∥∥∥
L1

≤ e−µt
∥∥U0

2

∥∥
L1 ,

which imply that Û2(θ, t) → 0 as t tends to infinity. By using (3.17), we have U1(t) = 0 and

U2(θ, t) → 0 as t → ∞. It follows from the first equation of system (2.1) that S(t) → S0 as

t → ∞. Thus, the drug-free equilibrium E0 is globally asymptotically stable in ∂M̃. This

completes the proof of Theorem 3.4. ¤
Next, we introduce the following result about linear scalar Volterra integro-differential

equations which will be helpful in next proofs.

Lemma 3.1([34]) Consider the following scalar Volterra integro-differential equations:

dh(t)
dt

=
∫ ∞

0
η(θ)h(t− θ)dθ − ah(t), h(0) > 0,

where η(·) ∈ L1
+(0,+∞), and

∫∞
0 η(θ)dθ > a. There is a unique solution h(t) which is un-

bounded.

Finally, by combining Theorem 4.2 in Hale and Waltman [35] and Theorem 3.7 in Magal

and Zhao [36], we are able to prove the following theorem.

Theorem 3.5 Assume that R0 > 1. Then the semiflow
{
U(t)

}
t≥0

generated by system

(3.3) is uniformly persistent in M̃ with respect to the decomposition (∂M̃,M̃) , i.e., there

exists ε > 0 which is independent of initial values such that for each
(
S,U1, 0, U0

2

) ∈ M̃,

lim inf
t→+∞ S(t) ≥ ε, lim inf

t→+∞ U1(t) ≥ ε, lim inf
t→+∞

∥∥U2(·, t)
∥∥

L1
+
≥ ε.

Furthermore, the semiflow
{
U(t)

}
t≥0

has a compact global attractor A0 in M̃.

Proof. Since the drug-free equilibrium E0

(
S∗0 , 0, 0, 0L1

)
is globally asymptotically stable

in ∂M̃, we need only to study the behavior of the solution starting in M̂ in some neighborhood

of E0. Note

W s
({E0}

)
=

{
x ∈ X0+ : lim

t→+∞U(t)x = E0

}
.

We need only to show

W s
({E0}

) ∩ M̃ = ∅.

For the sake of contradiction, we assume that there exists a list of xn =
(
Sn(0), Un

1 (0), 0, Un
2 (·, 0)

) ∈{
y ∈ M̃ : ‖E0 − y‖ ≤ ς

}
such that

∥∥E0 − U(t)xn

∥∥ ≤ 1
n + 1

, ∀ t ≥ 0.
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Set
(
Sn(t), Un

1 (t), 0, Un
2 (·, t)) := U(t)xn. Then for all t ≥ 0, we have

∥∥(
Sn(t), Un

1 (t), 0, Un
2 (·, t))− (

S∗0 , 0, 0, 0L1

)∥∥ ≤ 1
n + 1

, ∀ t ≥ 0.

Then we can choose large enough n > 0 such that S∗0 − 1
n+1 > 0. For the chosen n, there

exists a T > 0 such that for all t > T we have

S∗0 −
1

n + 1
< Sn(t) < S∗0 +

1
n + 1

, 0 ≤ Un
1 (t) ≤ 1

n + 1
.

From the solutions (3.1), we obtain

U2(θ, t) = U2(t− θ, 0)Π(θ) + U0
2 (θ − t)

Π(θ)
Π(θ − t)

≥ p U1(t− θ)Π(θ). (3.22)

By inserting (3.22) into the second equation of (2.1) and applying a simple comparison prin-

ciple, we have

Un
1 (t) ≥ Ũn

1 (t), (3.23)

where Ũn
1 (t) is the solution of the following auxiliary system





dŨn
1 (t)
dt

= p

∫ ∞

0
k(θ)Π(θ)Ũn

1 (t− θ)dθ −
{(

µ + δ1 + p
)− β

(
S∗0 −

1
n + 1

)}
Ũn

1 (t),

Ũn
1 (0) = Un

1 (0) ≥ 0.
(3.24)

Note that if Ũn
1 (0) = 0, then Ũn

1 (t) > 0. So without loss of generality, we can take Ũn
1 (0) > 0.

Since

R0 =
β · Λ

µ

(µ + δ1 + p)− pK
> 1,

there exists n ∈ R+ large enough such that

β ·
{

Λ
µ − 1

n+1

}

(µ + δ1 + p)− pK
> 1.

Note S∗0 =
Λ
µ

and K =
∫ ∞

0
k(θ)Π(θ)dθ. Therefore, we have

p

∫ ∞

0
k(θ)Π(θ)dθ >

(
µ + δ1 + p

)− β

(
S∗0 −

1
n + 1

)
.

By Lemma 3.1, Ũn
1 (t) is unbounded. Since Un

1 (t) ≥ Ũn
1 (t), we get that Un

1 (t) is unbounded.

This contradicts to the boundedness of Un
1 (t). Thus, W s

({E0}
) ∩ M̃ = ∅ holds true.

From Theorem 3.1, it then follows that the semiflow
{
U(t)

}
t≥0

is asymptotically smooth,

point dissipative and that the forward trajectory of a bound set is bounded. Furthermore,

the drug-free equilibrium E0 is globally asymptotically stable in ∂M̃ . Thus, Theorem 4.2 of

Hale and Waltman [35] implies the semiflow
{
U(t)

}
t≥0

is uniformly persistent with respect

to (∂M̃,M̃). The proof of Theorem 3.5 is thus completed. ¤
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4 Proofs of the main results

In the previous section we established the local stability of the equilibria, that is, if

the initial conditions are close enough to the equilibrium, the solution will converge to that

equilibrium. Furthermore, we obtain the uniform persistence of the system (2.1). In this

section our objective is to extend above local results to global results. That is, given the

conditions on the parameters, convergence to the equilibrium occurs independently of the

initial conditions.

4.1 Global stability of the drug-free equilibrium

As a first step, We will use Lyapunov functional method to establish the global stability

of the drug-free equilibrium.

Proof of Theorem 2.2 From Theorem 3.2 we know that the drug-free equilibrium

E0(S∗0 , 0, 0) of system (2.1) is locally asymptotically stable if R0 < 1. In the following, we

only need to show that the drug-free equilibrium E0 is the global attractor in R+ × R+ ×
L+

(
(0,+∞),R

)\∂M0 if R0 < 1, i.e.,

A0 =
{
E0

}
.

We will use a suitable Lyapunov functional to approach the problem. We adopt the

logistic function used in [24]. Define

g(x) = x− 1− lnx, x ∈ R+. (4.1)

We note that g(x) ≥ 0 for all x > 0. g(x) achieves its global minimum at one, with g(1) = 0.

Moreover, we also have

g′(x) = 1− 1
x

.

This fact is widely used in the proofs of global stability.

For ease of presentation, let us define

α(θ) =
∫ ∞

θ
k(σ) exp

{
−

∫ σ

θ

(
µ + δ2 + k(τ)

)
dτ

}
dσ

=
∫ ∞

θ
k(σ)

Π(σ)
Π(θ)

dσ.
(4.2)

Note that α(θ) > 0 for all 0 < θ < +∞. We can easily check that

α(0) =
∫ ∞

0
k(σ)Π(σ)dσ = K. (4.3)

We also have

α′(θ) = α(θ)
(
µ + δ2 + k(θ)

)
− k(θ). (4.4)
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Now let us define the following Lyapunov functional

V (t) = V1(t) + U1(t) + V2(t), (4.5)

where

V1(t) = S∗0g

(
S(t)
S∗0

)
, V2(t) =

∫ ∞

0
α(θ)U2(θ, t)dθ. (4.6)

We can easily see that the function V (t) is bounded when restricted to A0. Since the function

g(x) is nonnegative for all x > 0, and has the global minimum at x = 1, it then follows that

the function V (t) is nonnegative and the point E0 is the global minimum point. We can also

easily see that the function V (t) is continuously differentiable.

First, calculating the time derivative of V1(t) along with the solution curves of system

(2.1) and using the fact Λ = µS∗0 , we have

V ′
1(t) = S∗0

(
1− S∗0

S(t)

)
S′(t)
S∗0

= S∗0

(
1
S∗0

− 1
S(t)

) (
Λ− βS(t)U1(t)− µS(t)

)

= S∗0

(
1
S∗0

− 1
S(t)

) (
µ
(
S∗0 − S(t)

)− βS(t)U1(t)
)

= −
(
S∗0 − S(t)

)2

S(t)
+ βS∗0U1(t)− βS(t)U1(t).

(4.7)

Next, calculating the time derivative of V2(t) along with the solution curves of system

(2.1) and using (4.3),(4.4) and collecting terms, we obtain

V ′
2(t) =

∫ ∞

0
α(θ)

∂U2(θ, t)
∂t

dθ

= −
∫ ∞

0
α(θ)

∂U2(θ, t)
∂θ

dθ −
∫ ∞

0
α(θ)

(
µ + δ2 + k(θ)

)
U2(θ, t)dθ

= −α(θ)U2(θ, t)
∣∣∣
θ=∞

θ=0
+

∫ ∞

0
U2(θ, t)

∂α(θ)
∂θ

dθ −
∫ ∞

0
α(θ)

(
µ + δ2 + k(θ)

)
U2(θ, t)dθ

= −α(θ)U2(θ, t)
∣∣∣
θ=∞

+ α(0)U2(0, t) +
∫ ∞

0
U2(θ, t)

[
α(θ)

(
µ + δ2 + k(τ)

)
− k(θ)

]
dθ

−
∫ ∞

0
α(θ)

(
µ + δ2 + k(θ)

)
U2(θ, t)dθ

= −α(θ)U2(θ, t)
∣∣∣
θ=∞

+ α(0)U2(0, t)−
∫ ∞

0
k(θ)U2(θ, t)dθ

= −α(θ)U2(θ, t)
∣∣∣
θ=∞

+ pU1(t)
∫ ∞

0
k(θ)Π(θ)dθ −

∫ ∞

0
k(θ)U2(θ, t)dθ.

(4.8)
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Note the formula of R0. Adding all three components of the Lyapunov functional, we have

V ′(t) = V ′
1(t) + U ′

1(t) + V ′
2(t)

= −
(
S∗0 − S(t)

)2

S(t)
+ βS∗0U1(t)−

(
µ + δ1 + p

)
U1(t)− α(θ)U2(θ, t)

∣∣∣
θ=∞

+pU1(t)
∫ ∞

0
k(θ)Π(θ)dθ

= −
(
S∗0 − S(t)

)2

S(t)
+

{(
µ + δ1 + p

)− p

∫ ∞

0
k(θ)Π(θ)dθ

} (
R0 − 1

)
U1(t)

−α(θ)U2(θ, t)
∣∣∣
θ=∞

≤ 0.

(4.9)

The last inequality follows from the fact that R0 < 1. Notice that V ′(t) equals zero if and

only if S(t) = S∗0 and U1(t) = 0. We define a set

Υ =
{(

S,U1, U2

) ∈ S
∣∣∣ V ′(t) = 0

}
. (4.10)

Thus, the set A0 =
{
E0

}
is the largest compact invariant set of Υ, i.e., this largest compact

invariant set is the singleton given by the drug-free equilibrium. By the Lyapunov-LaSalle

invariance principle[37], we conclude that the drug-free equilibrium E0 is globally asymptot-

ically stable when R0 < 1. This completes the proof of Theorem 2.2. ¤

4.2 Global stability of the drug spread equilibrium

In the previous section, we have obtain that the system (2.1) is uniformly persistent and

have a global attractor. Now we are ready to establish the global stability of the drug spread

equilibrium E∗, i,e., for any initial condition, the solution of system (2.1) converges to E∗

when R0 > 1. To demonstrate that with a suitable Lyapunov functional W (t), we have to

establish that W ′(t) ≤ 0 along the solution curves of system (2.1).

Proof of Theorem 2.3. The first result of Theorem 2.3 can be easily seen from Theorem

3.3, we need only to prove the second part. From Theorem 3.2 we know that the unique drug

spread equilibrium E∗(S∗, U∗
1 , U∗

2 (θ) of system (2.1) is locally asymptotically stable if R0 > 1.

In the following, we only need to show that the unique drug spread equilibrium E∗ is the

global attractor in R+ × R+ × L+

(
(0,+∞),R

)\∂M0, i.e.,

A0 =
{
E∗}.

Similarly to the proof of Theorem 2.2, we still use a suitable Lyapunov functional to

approach the problem.
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Let u(t) = (S(t);U1(t);U2(θ; t)) ba a complete solution to system (2.1) that lies in the

attractor A0. From Theorem 3.5, we know there exist δ1; δ2 > 0 such that

δ1 ≤ S(t)
S∗

≤ δ2, δ1 ≤ U1(t)
U∗

1

≤ δ2, δ1 ≤ U2(θ, t)
U∗

2 (θ)
≤ δ2

for all t ∈ R and θ ≥ 0.

Now let us define the following Lyapunov functional:

W (t) = WS(t) + W1(t) + W2(t), (4.11)

where

WS(t) = S∗g
(

S(t)
S∗

)
, W1(t) = U∗

1 g

(
U1(t)
U∗

1

)
, W2(t) =

∫ ∞

0
α(θ)U∗

2 (θ)g
(

U2(θ, t)
U∗

2 (θ)

)
dθ,

(4.12)

where g(x) = x− 1− lnx (x ∈ R+) is showed in (4.1 ) and α(θ) is showed in (4.2). We can

easily see that the function W (t) is bounded when restricted to A0. Since the function g(x)

is nonnegative for all x > 0, and has the global minimum at x = 1, it then follows that the

function W (t) is nonnegative and the point E∗ is the global minimum point. We can also

easily see that the function W (t) is continuously differentiable.

Because of the complexity of the expressions, we take the derivative of each component

of the Lyapunov functional separately.

First, differentiating WS(t) along the solution curves of system (2.1) and using the fact

Λ = βS∗U∗
1 + µS∗, we have

W ′
S(t) = S∗

(
1− S∗

S(t)

)
1
S∗

S′(t)

= S∗
(

1
S∗

− 1
S(t)

) (
Λ− βS(t)U1(t)− µS(t)

)

= S∗
(

1
S∗

− 1
S(t)

) [
µ
(
S∗ − S(t)

)
+

(
βS∗U∗

1 − βS(t)U1(t)
)]

= −µ(S(t)− S∗)2

S
+ βS∗U∗

1

(
1− S∗

S(t)

)(
1− S(t)

S∗
U1(t)
U∗

1

)
.

(4.13)

Next, differentiating W1(t) along the solution curves of system (2.1), we have

W ′
1(t) = U∗

1

(
1− U∗

1

U1(t)

)
1

U∗
1

U ′
1(t)

= U∗
1

(
1

U∗
1

− 1
U1(t)

){
βS(t)U1(t)−

(
µ + δ1 + p

)
U1(t) +

∫ ∞

0
k(θ)U2(θ, t)dθ

}
.
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Note that

µ + δ1 + p =
1

U∗
1

(
βS∗U∗

1 +
∫ ∞

0
k(θ)U∗

2 (θ)dθ

)
.

So we have

W ′
1(t)

= U∗
1

(
1

U∗
1

− 1
U1(t)

){
βS(t)U1(t)− U1(t)

U∗
1

(
βS∗U∗

1 +
∫ ∞

0
k(θ)U∗

2 (θ)dθ

)

+
∫ ∞

0
k(θ)U2(θ, t)dθ

}

=
(

1− U∗
1

U1(t)

){
βS∗U∗

1

(
S(t)
S∗

U1(t)
U∗

1

− U1(t)
U∗

1

)

+
∫ ∞

0
k(θ)U∗

2 (θ)
(

U2(θ, t)
U∗

2 (θ)
− U1(t)

U∗
1

)
dθ

}

= βS(t)U1(t)− βS∗U1(t)− βS(t)U∗
1 + βS∗U∗

1

+
∫ ∞

0
k(θ)U∗

2 (θ)
(

U2(θ, t)
U∗

2 (θ)
− U1(t)

U∗
1

− U∗
1

U1(t)
U2(θ, t)
U∗

2 (θ)
+ 1

)
dθ.

(4.14)

Now we turn to the derivative of W2(t).

W ′
2(t)

=
∫ ∞

0
α(θ)U∗

2 (θ) · ∂

∂t
g

(
U2(θ, t)
U∗

2 (θ)

)
dθ

=
∫ ∞

0
α(θ)U∗

2 (θ) ·
(

1− U∗
2 (θ)

U2(θ, t)

)
1

U∗
2 (θ)

∂U2(θ, t)
∂t

dθ

=
∫ ∞

0
α(θ)U∗

2 (θ) ·
(

1− U∗
2 (θ)

U2(θ, t)

)
1

U∗
2 (θ)

{
−∂U2(θ, t)

∂θ
− (

µ + δ2 + k(θ)
)
U2(θ, t)

}
dθ

= −
∫ ∞

0
α(θ)U∗

2 (θ) ·
(

1− U∗
2 (θ)

U2(θ, t)

)
U2(θ, t)
U∗

2 (θ)

{
U2θ(θ, t)
U2(θ, t)

+
(
µ + δ2 + k(θ)

)}
dθ

= −
∫ ∞

0
α(θ)U∗

2 (θ) ·
(

U2(θ, t)
U∗

2 (θ)
− 1

){
U2θ(θ, t)
U2(θ, t)

+
(
µ + δ2 + k(θ)

)}
dθ.

(4.15)

where U2θ(θ, t) denotes
∂U2(θ, t)

∂θ
.
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Note that

∂

∂θ
g

(
U2(θ, t)
U∗

2 (θ)

)
=

(
1− U∗

2 (θ)
U2(θ, t)

)
· ∂

∂θ

(
U2(θ, t)
U∗

2 (θ)

)

=
(

1− U∗
2 (θ)

U2(θ, t)

)
·

∂U2(θ, t)
∂θ

U∗
2 (θ)− U2(θ, t)

dU∗
2 (θ)
dθ(

U∗
2 (θ)

)2

=
(

1− U∗
2 (θ)

U2(θ, t)

)
· U2θ(θ, t)U∗

2 (θ)− U2(θ, t)
[− (

µ + δ2 + k(θ)
)
U∗

2 (θ)
]

(
U∗

2 (θ)
)2

=
(

1− U∗
2 (θ)

U2(θ, t)

)
· U2θ(θ, t) + U2(θ, t)

(
µ + δ2 + k(θ)

)

U∗
2 (θ)

=
(

1− U∗
2 (θ)

U2(θ, t)

)
· U2(θ, t)

U∗
2 (θ)

{
U2θ(θ, t)
U2(θ, t)

+
(
µ + δ2 + k(θ)

)}

=
(

U2(θ, t)
U∗

2 (θ)
− 1

)
·
{

U2θ(θ, t)
U2(θ, t)

+
(
µ + δ2 + k(θ)

)}
.

(4.16)

Substituting (4.16) into (4.15) and using integration by parts, we obtain

W ′
2(t) = −

∫ ∞

0
α(θ)U∗

2 (θ) · ∂

∂θ
g

(
U2(θ, t)
U∗

2 (θ)

)
dθ

= −α(θ)U∗
2 (θ)g

(
U2(θ, t)
U∗

2 (θ)

) ∣∣∣∣
θ=∞

θ=0

+
∫ ∞

0
g

(
U2(θ, t)
U∗

2 (θ)

)
d

dθ

(
α(θ)U∗

2 (θ)
)
dθ

= −α(θ)U∗
2 (θ)g

(
U2(θ, t)
U∗

2 (θ)

) ∣∣∣∣
θ=∞

+ α(0)U∗
2 (0)g

(
U2(0, t)
U∗

2 (0)

)

+
∫ ∞

0
g

(
U2(θ, t)
U∗

2 (θ)

)
d

dθ

(
α(θ)U∗

2 (θ)
)
dθ.

(4.17)

Note that

d

dθ

(
α(θ)U∗

2 (θ)
)

=
d

dθ
α(θ) · U∗

2 (θ) + α(θ) · d

dθ
U∗

2 (θ)

=
[
α(θ)

(
µ + δ2 + k(θ)

)
− k(θ)

]
· U∗

2 (θ) + α(θ) ·
[
−

(
µ + δ2 + k(θ)

)
U∗

2 (θ)
]

= −k(θ)U∗
2 (θ),

(4.18)

and

α(0) =
∫ ∞

0
k(θ)Π(θ)dθ, U∗

2 (0) = pU∗
1 , U2(θ, t) = pU1(t). (4.19)
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Substituting (4.18) and (4.19) into (4.17), we also have

W ′
2(t) = −α(θ)U∗

2 (θ) · g
(

U2(θ, t)
U∗

2 (θ)

) ∣∣∣∣
θ=∞

+ pU∗
1

∫ ∞

0
k(θ)Π(θ)dθ · g

(
U1(t)
U∗

1

)

−
∫ ∞

0
g

(
U2(θ, t)
U∗

2 (θ)

)
k(θ)U∗

2 (θ)dθ.
(4.20)

Combing the above three components of the Lyapunov function, we obtain

W ′(t) = W ′
S(t) + W ′

1(t) + W ′
2(t)

=

{
−µ

(
S(t)− S∗

)2

S(t)
+ βS∗U∗

1

(
1− S∗

S(t)

)(
1− S(t)

S∗
U1(t)
U∗

1

)}

+
{

βS(t)U1(t)− βS∗U1(t)− βS(t)U∗
1 + βS∗U∗

1

+
∫ ∞

0
k(θ)U∗

2 (θ)
(

U2(θ, t)
U∗

2 (θ)
− U1(t)

U∗
1

− U∗
1

U1(t)
U2(θ, t)
U∗

2 (θ)
+ 1

)
dθ

}

+
{
− α(θ)U∗

2 (θ) · g
(

U2(θ, t)
U∗

2 (θ)

) ∣∣∣∣
θ=∞

+ pU∗
1

∫ ∞

0
k(θ)Π(θ)dθ · g

(
U1(t)
U∗

1

)

−
∫ ∞

0
g

(
U2(θ, t)
U∗

2 (θ)

)
k(θ)U∗

2 (θ)dθ

}

= −µ
(
S(t)− S∗

)2

S(t)
+ βS∗U∗

1

(
1− S(t)

S∗
U1(t)
U∗

1

− S∗

S(t)
+

U1(t)
U∗

1

)

+βS(t)U1(t)− βS∗U1(t)− βS(t)U∗
1 + βS∗U∗

1

+
∫ ∞

0
k(θ)U∗

2 (θ)
(

U2(θ, t)
U∗

2 (θ)
− U1(t)

U∗
1

− U∗
1

U1(t)
U2(θ, t)
U∗

2 (θ)
+ 1

)
dθ

−α(θ)U∗
2 (θ) · g

(
U2(θ, t)
U∗

2 (θ)

) ∣∣∣∣
θ=∞

+ pU∗
1

∫ ∞

0
k(θ)Π(θ)dθ · g

(
U1(t)
U∗

1

)

−
∫ ∞

0
k(θ)U∗

2 (θ)
(

U2(θ, t)
U∗

2 (θ)
− 1− ln

U2(θ, t)
U∗

2 (θ)

)
dθ

= −µ
(
S(t)− S∗

)2

S(t)
+ βS∗U∗

1

(
2− S∗

S(t)
− S(t)

S∗

)

+
∫ ∞

0
k(θ)U∗

2 (θ)
{
− U1(t)

U∗
1

− U∗
1

U1(t)
U2(θ, t)
U∗

2 (θ)
+ 2 + ln

U2(θ, t)
U∗

2 (θ)

}
dθ

−α(θ)U∗
2 (θ) · g

(
U2(θ, t)
U∗

2 (θ)

) ∣∣∣∣
θ=∞

+ pU∗
1

∫ ∞

0
k(θ)Π(θ)dθ · g

(
U1(t)
U∗

1

)
.

(4.21)

23



Rearranging equation (4.21), we can obtain

W ′(t) = −µ
(
S(t)− S∗

)2

S(t)
+ βS∗U∗

1

(
2− S∗

S(t)
− S(t)

S∗

)

+
∫ ∞

0
k(θ)U∗

2 (θ)
{(

1− U∗
1

U1(t)
U2(θ, t)
U∗

2 (θ)
+ ln

U∗
1

U1(t)
U2(θ, t)
U∗

2 (θ)

)

+
(

1− U1(t)
U∗

1

+ ln
U1(t)
U∗

1

)}
dθ − α(θ)U∗

2 (θ) · g
(

U2(θ, t)
U∗

2 (θ)

) ∣∣∣∣
θ=∞

+pU∗
1

∫ ∞

0
k(θ)Π(θ)dθ · g

(
U1(t)
U∗

1

)

= −µ
(
S(t)− S∗

)2

S(t)
+ βS∗U∗

1

(
2− S∗

S(t)
− S(t)

S∗

)

−
∫ ∞

0
k(θ)U∗

2 (θ)g
(

U∗
1

U1(t)
U2(θ, t)
U∗

2 (θ)

)
−

∫ ∞

0
k(θ)U∗

2 (θ)g
(

U1(t)
U∗

1

)
dθ

−α(θ)U∗
2 (θ) · g

(
U2(θ, t)
U∗

2 (θ)

) ∣∣∣∣
θ=∞

+ pU∗
1

∫ ∞

0
k(θ)Π(θ)dθ · g

(
U1(t)
U∗

1

)
.

(4.22)

Noticing the formula in (2.7), we have

W ′(t) = −µ
(
S(t)− S∗

)2

S(t)
+ βS∗U∗

1

(
2− S∗

S(t)
− S(t)

S∗

)

−
∫ ∞

0
k(θ)U∗

2 (θ)g
(

U∗
1

U1(t)
U2(θ, t)
U∗

2 (θ)

)
−

∫ ∞

0
k(θ) · pU∗

1 Π(θ) · g
(

U1(t)
U∗

1

)
dθ

−α(θ)U∗
2 (θ) · g

(
U2(θ, t)
U∗

2 (θ)

) ∣∣∣∣
θ=∞

+ pU∗
1

∫ ∞

0
k(θ)Π(θ)dθ · g

(
U1(t)
U∗

1

)

= −µ
(
S(t)− S∗

)2

S(t)
− βS∗U∗

1

(
S∗

S(t)
− 2 +

S(t)
S∗

)

−
∫ ∞

0
k(θ)U∗

2 (θ)g
(

U∗
1

U1(t)
U2(θ, t)
U∗

2 (θ)

)
− α(θ)U∗

2 (θ) · g
(

U2(θ, t)
U∗

2 (θ)

) ∣∣∣∣
θ=∞

.

(4.23)

Since the arithmetic mean is greater than or equal to the geometric mean, we have
S∗

S(t)
− 2 +

S(t)
S∗

≥ 0.

Hence, we have W ′(t) ≤ 0. Let

Υ̂ =
{(

S,U1, U2

) ∈ S
∣∣∣ W ′(t) = 0

}
. (4.24)

We want to show that the largest invariant set in Υ̂ is the singleton
{
E∗}. First, we notice

that equality in (4.23) occurs if and only if S(t) = S∗, and

S∗

S(t)
=

S(t)
S∗

,
U∗

1

U1(t)
U2(θ, t)
U∗

2 (θ)
= 1 and

U2(θ, t)
U∗

2 (θ)
= 1. (4.25)
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From conditions (4.25) it follows that

S(t) = S∗, U1(t) = U∗
1 , U2(θ, t) = U∗

2 (θ). (4.26)

Thus, we conclude that the set A0 =
{
E∗} is the largest compact invariant set of Υ̂, i.e., this

largest compact invariant set is the singleton given by the drug spread equilibrium. By the

Lyapunov-LaSalle invariance principle[37], we conclude that the drug spread equilibrium E∗

is globally asymptotically stable when R0 > 1. This completes the proof of Theorem 2.3. ¤

5 Discussion

Recently, several mathematical models (as mentioned in introduction) have been devel-

oped to describe the heroin epidemic. Most of these heroin epidemic models are ODE models

and assume that the relapse rate are indifferent to the treat-age. In this paper, we present a

heroin epidemic model with treat-age, based on the principles of mathematical epidemiology.

The model accounts for relapse rate that depend on how long the host has been in treatment.

We analyze the existence and stability of the equilibria of the model. We characterize the

threshold conditions of the heroin epidemic model with an explicit formula for the reproduc-

tion number of heroin use, which gives the number of secondary untreated users that one

untreated user will cause in an entirely susceptible population. The reproduction number

is the threshold which completely determines the stability of the equilibria. By using the

direct Lyapunov method and constructing appropriate Lyapunov functional, we show that

the drug-free equilibrium is globally stable in the feasible region and the drug phenomenon

always disappears if R0 < 1. If R0 > 1, the drug-free equilibrium is unstable and a unique

drug spread equilibrium is globally asymptotically stable in the interior of the feasible region

and the drug phenomenon will persist at the drug spread equilibrium if it is initially present.

Because the age-structured model in this paper is described by partial differential equa-

tions and the tools used for the ODE models can not be used for analyzing the dynamics of

PDE models, it is difficult to analyze the dynamics, particularly the global stability, of the

PDE models due to the lack of applicable theories. The method of Lyapunov functions is

most commonly used to prove the global stability of nonlinear dynamical systems. In this

paper, by constructed a class of global Lyapunov functionals, and proved that the dynamics

of the heroin epidemic model are completely determined by the basic reproduction number.

Lyapunov functions of this type has been widely used for analyzing the ODE models in the

literature and was recently rediscovered (e.g., 24, 33, 38) to study the global stability of en-

demic equilibrium for the epidemic models with age of infection. But the techniques used for
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the PDE models are quite different from the techniques used for the ODE models. Further-

more, since our heroin epidemic model exhibits the relapse phenomenon, the process that we

prove the global stability of our age-structured model is not the trivial extension.

The reproduction number R0 is an increasing function of transmission coefficient β which

gives the rate of becoming a drug user, but a decreasing function of p which is the rate of

drug users who enter treatment. Our mathematical analysis suggests that the spread of the

heroin use should be controlled through stringent screening measures to reduce the values of

β, through educational campaigns at all social levels, and particularly to epidemiologists and

treatment providers in order to increase the values of p. Furthermore, we have

∂R0

∂K
=

β Λ
µ p

[(µ + δ1 + p)− pK]2
,

which signifies that as K increases, R0 increases. Since K is the probability of leaving the

treatment class and then entering the untreated class, then long time treatment is beneficial

to control the spread of habitual drug use.
For practical purposes, these results suggest that prevention is better than treatment.

Efforts to increase prevention are more effective in controlling the spread of habitual heroin
use than efforts to increase the number of individuals who have access to treatment. These
results are provided with intention to inform and assist policy-makers in targeting prevention
and treatment resources for maximum effectiveness.
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