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Abstract. It is well known that in the most general epidemic models with multi-
ple pathogen variants a competitive exclusion principle is valid, such that the variant
with the highest reproduction number eliminates the rest. Mechanisms such as super-
infection, coinfection, and cross-immunity can lead to pathogen polymorphism where
multiple strains coexist. It is also known that variability of infectivity with host age
can destabilize the endemic equilibrium and cause oscillations. In this article we show
that the hosts’ chronological age can itself lead to coexistence of microparasites in the
most basic model where competitive exclusion will occur without the age structure.
Moreover, the host age-structure leads to multiple subthreshold dominance equilib-
ria, and both weakly and strongly subthreshold coexistence. We find that the two
pathogens cannot cooperate to persist subthreshold if neither one of them can persist
subthreshold by itself. If, however, one of them can persist subthreshold by itself, it
can cause the two pathogens to coexist in a strongly subthreshold equilibrium. The
second strain that persists subthreshold through the mediation of the first always has
a lower virulence. Our results show that age structure in infectivity can permit the
coexistence of competing pathogens when the incidence is of proportionate mixing type
(frequency-dependent transmission) and at least one of the strains is virulent.

Keywords: chronological age structure, multiple pathogen variants, coexistence, sub-
threshold dominance equilibria, weakly subthreshold coexistence, strongly subthreshold
coexistence, induced subthreshold coexistence.

1. Introduction

Identifying the factors that influence the coexistence of species has been a fundamental
goal of the ecological sciences [24] since the early days of G.F. Gause’s experiments
on protozoan competition ([19], Chapter V) to current concerns with the maintenance
of biodiversity and the classification of coexistence mechanisms (e.g., [13]). Gause’s
experimental demonstration that in homogeneous, well-mixed systems similar species
tended to show competitive exclusion led to the basic concept of competitive exclusion,
which in effect says that for species to coexist stably and indefinitely, they must have
distinct ecologies, and in particular be regulated by different limiting factors. In practice,
what counts as a ”limiting factor” can often be quite difficult to identify. In simple cases,
where there is single, unstructured resource of abundance R, the system is spatially
closed, and the system settles down to an equilibrium, one can demonstrate simple rules
of competitive dominance, such as the R* rule ([44]; the asterisk denotes equilibrium).
Basically, the dominant species in exploitative competition for a single limiting resource
is the one that can persist at the lower resource level.

This same issue arises in infectious disease epidemiology, where one of the main ques-
tions is to identify the conditions that lead to the coexistence of alternative strains of a
given disease agent. As noted in Holt and Dobson [25], there exist various mechanisms
that can prevent competitive exclusion and permit coexistence of different pathogen
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species, corresponding to familiar ecological mechanisms such as keystone predation,
niche partitioning [14], and competition-colonization trade-offs. One of the most in-
teresting possible coexistence scenarios involves paying close attention to the detailed
pattern of infection dynamics within single host species. Simple SI models in effect as-
sume that all hosts are equivalent with respect to infection and recovery, but realistic
populations may exhibit considerable variation in infectivity. The chronological age is a
likely factor that may attribute to the differences in contact rates, and the vulnerability
to infection via differential immunity ([2], Chapter 9). Differences between pathogen
strains in age-specific patterns of infection could potentially permit a single host species
to provide multiple limiting resources, permitting coexistence.

In this paper we use a mathematical model to show that the host heterogeneity in age
allows for stable coexistence of two pathogen strains competing for a single host species.
Such coexistence in some respect resembles niche partitioning, providing coexistence
mechanism due to variability in transmission between alternative host species [25]. The
variability in transmission, however, in our case is given by host age differentiation.
To the best of our knowledge, the influence of the host age on strain coexistence has
not been studied to date in mathematical models. An empirical motivation for such
an analysis is that various recent studies report a link between the age of the infected
individuals and the serotypes (strains) of infection. Host age was found to impact the
proportion of certain strains of Escherichia coli isolated from individuals [21]. It is
suggested that macroparasitic genetic diversity may explain the rise in prevalence and
parasite burden with age in childhood with a peak around age of 11 [20]. Different
serotypes of Streptococcus pneumoniae are viewed to cause infection in children and
adults [41]. Finally, a study reports that some serotypes of S. pneumoniae are never
found in patients that belong to particular age groups [26]. These field observations
provide evidence that the hosts’ heterogeneities in age, perhaps through corresponding
differences in exposure, infectivity, or immunity, can potentially be related to pathogen
genetic diversity.

This paper is structured as follows. In the next section we introduce a two-strain
ODE model with proportionate mixing incidence and show that a competitive exclusion
principle holds. We next extend the model to include the host age structure by allowing
the infectivity of infectious individuals to vary with age. In section 3 we derive the triv-
ial (disease-free) and semitrivial (dominance) equilibria of the age-structured model. In
section 4 we show that coexistence can occur in the form of a stable equilibrium. The
coexistence discussed in section 4 occurs when the reproduction numbers of both strains
are above one, which we will call superthreshold. In section 5 we show that dominance
of each strain is possible in the age-structured case even when its corresponding repro-
duction number is below one (subthreshold). Furthermore we show that coexistence is
also possible for the subthreshold case. In section 6 we summarize our findings and
conclusions.

2. A simple age-structured model with two pathogen variants

It is well-known that variability with time-since-infection in host infectivity can cause
qualitative changes in the dynamics of infectious diseases [42, 43, 32] and destabilize
the endemic equilibrium while leading to sustained oscillations. Moreover, theoretical
studies have identified many mechanisms that lead to the polymorphism of pathogen
variants. In this article we put these two themes together by investigating the impact
that the host’s chronological age heterogeneity has on the maintainance of microorganism
genetic diversity. In the case when there is no coexistence, we elucidate the role of several
mechanisms related to host age structure that determine which pathogen dominates.
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To illustrate these points we consider a simple age-structured epidemiological model
with two strains circulating in a population of size N(t). The only interaction between
the two pathogens is a purely exploitative competition for the common pool of susceptible
individuals S(t); co-infections or super-infections do not occur. The baseline model is of
the standard SI type with two pathogen types. The number of hosts infected with the
two strains are respectively I(t) and J(t). We also assume that an infection of type i is
associated with an additional mortality rate of αi added to a base mortality of µ > 0.
In the case when infectivity is constant the competition of the strains is governed by a
system of ODEs:

S′(t) = B − λ1(t)S(t) − λ2(t)S(t) − µS(t),

I ′(t) = λ1(t)S(t) − (µ + α1)I(t),(2.1)

J ′(t) = λ2(t)S(t) − (µ + α2)J(t).

In (2.1) we assume that the total birth rate of susceptibles is constant. There are many
epidemiological and biological scenarios where this assumption is reasonable. Such con-
stant recruitment is justified if the recruitment into the population is not internal but
happens from an outside open source. For instance, constant recruitment is justified in
the case of a population of school children which are recruited from the general popula-
tion with a fixed cohort size. Another biological example comes from intertidal marine
systems, where recruitment into a local population is driven almost entirely by inputs
from external source [15].

For the most of the paper we will assume that λ1(t) = β1I(t)/N(t) is the force of
infection of the first type and λ2(t) = β2J(t)/N(t) is the force of infection of the second
type. Thus, we assume proportionate mixing (sometimes called “true” mass-action [27]).
The transmission rate of microorganism i is βi The total population is the sum of all
subgroups: N(t) = S(t) + I(t) + J(t). We assume that all parameters are positive.
The total population size is not constant and satisfies the following differential equation
obtained by adding the three equations in the system (2.1):

(2.2) N ′(t) = B − µN(t) − α1I(t) − α2J(t).

The reproduction number of a pathogen is defined as the expected number of secondary
infections one infectious individual can generate in a population of susceptible individuals
during its lifetime. The reproduction numbers of the two strains are given by

R1 =
β1

µ + α1
R2 =

β2

µ + α2
,

respectively. Bremermann and Thieme [7] showed that in a model of this form with mass-
action [27] incidence with (density dependent transmission) λ1(t) = β1I and λ2(t) =
β2J(t), the competitive exclusion is the ultimate outcome; the strain with the larger
reproduction number persists, and the strain with the smaller reproduction number
dies out. Similar techniques lead to the same result for model (2.1). In particular, if we
consider the quantity ξ = Iβ2/Jβ1 it satisfies the simple differential equation ξ′(t) = νξ(t)
where ν = (µ + α1)(µ + α2)[R1 − R2]. The ratio ξ(t) behaves as a time exponent eνt

where the sign of ν determines the outcome of competition. For instance, if ν > 0, that
is if R1 > R2, then ξ → ∞ and therefore J(t) → 0 as t → ∞ because I(t) is bounded,
since it is dominated by N(t), whose lim sup does not exceed B/µ. If ν < 0, that is
R1 < R2, then ξ → 0 and necessarily I(t) → 0 as t → ∞ because J(t) is bounded. The
borderline case ν = 0 is degenerate because it corresponds to a continuum of coexistence
equilibria. We summarize this result in the following theorem:
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Theorem 2.1. If R1 < 1 and R2 < 1 then the disease-free equilibrium is locally and

globally stable, that is I(t) → 0 and J(t) → 0 as t → ∞. If at least one of the reproduction

numbers is larger than one, then the pathogen type with the larger reproduction number

persists and the other one dies out. Coexistence is not possible outside the degenerate

case R1 = R2.

Theorem 2.1 states that for the two strains in this ODE model a competitive ex-
clusion principle is valid, and only the strain with the maximal reproduction number
persists in the population [7]. The result of Theorem 2.1 illustrates the analogy between
the infection dynamics and purely exploitative resource competition. Indeed, the basic
reproduction number of each pathogen type R is related to the fraction of susceptible
individuals at the corresponding endemic equilibrium as

S

N
=

1

R
.

Therefore, the pathogen type with the higher value of R is always a more efficient
competitor because it can subsist at the lower level of “resource”, S

N
.

We now consider the impact of the host chronological age structure on strain com-
petition and coexistence. We start with the same model but introduce age-dependent
heterogeneity in host infectivity by assuming that β1 = β1(a) and β2 = β2(a), where a
is host chronological age. Thus the model (2.1) becomes:

st(a, t) + sa(a, t) = −λ1(t)s(a, t) − λ2(t)s(a, t) − µs(a, t), s(0, t) = B,

it(a, t) + ia(a, t) = λ1(t)s(a, t) − (µ + α1)i(a, t), i(0, t) = 0,(2.3)

jt(a, t) + ja(a, t) = λ2(t)s(a, t) − (µ + α2)j(a, t), j(0, t) = 0,

where s(a, t) is the age-density of susceptible individuals, i(a, t) and j(a, t) are the age-
densities of the individuals infected with the first and second strain respectively. The
force of infection terms are now given by

λ1(t) =
1

N(t)

∫

∞

0
β1(a)i(a, t) da, λ2(t) =

1

N(t)

∫

∞

0
β2(a)j(a, t) da

and represent the total per capita infection rates of each microparasite strain. As be-
fore, we assume that all newborns are susceptible and both pathogens are horizontally
transmitted. The equation for total population size N(t) again is given by (2.2) with
I(t) =

∫

∞

0 i(x, t) dx and J(t) =
∫

∞

0 j(x, t) dx.
Several comments are in order regarding this age-structured model. First, the model

assumes constant total “birth” rate. This assumption is quite in contrast with most
age-structured models. The assumption is necessary for two reasons. One of the reasons
is that it provides necessary consistency with the corresponding ODE model (2.1) that
allows the comparison of the two models. Another reason is that if the usual for age-
structured models total birth rate is assumed, it must be given by

s(0, t) =

∫

∞

0
b(a)[s(a, t) + i(a, t) + j(a, t)] da.

In this case the corresponding ODE model is obtained by assuming b(a) = b, that is,
independent of age. Thus the recruitment term in the ODE model (2.1) becomes bN , so
that both the ODE model and the PDE model are of homogeneous type, that is they do
not have time-independent solutions. Moreover, for the ODE model with recruitment
term given by bN (which applies to a closed host population without density-dependence)
it is known that coexistence may occur [30]. This contrasts with model (2.1) where no
such coexistence is possible. Our question is how age structure can impact pathogen
coexistence in an open population with external recruitment. Second, our model is not
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designed to fit any particular realistic scenario. On the contrary, it is made intentionally
as simple as possible to highlight the absolute minimal features necessary for coexistence
to occur. As such it is closest to a model developed to describe the transmission dynamics
of HIV-1 in a male homosexual population [22], which clearly is an open population
sustained by recruitment from an external source. Our model is essentially the model
in [22] but without the structure with respect to the new partners per unit of time and
with a second strain introduced. Although behavioral variation plays the major role
in HIV transmission, an individual’s age is also an important factor primarily because
it is correlated with behavior. For instance, Figure 1 in [22] suggests that individuals
(homosexual or heterosexual) age 40 or older are far more likely to have a unique partner
than multiple partners, while for younger individuals the likelihood of having unique
vs. multiple partners is about the same. Another study considered the unsafe sexual
behavior among HIV-infected individuals (homosexual or heterosexual) and found that
individuals aged 41 or older are much less likely to report unsafe sex [45]. With the
success of the antiretroviral therapy more infected individuals live to older ages and the
importance of that age group is rising [8]. Through age-dependent transmission, our
model captures some of these behavioral differences that covary with age.

Our model can be extended in various directions to be more realistic for other potential
scenarios, while still exhibiting the behavior that we address in this article. For instance,
a recovered class can be added to the model so that it becomes an SIR or an SIRS model.
We believe our analysis can be extended to that scenario. The extended model can be
used to model rotavirus infection in a school system that involves children of age up to
six. Although rotavirus infections cause few deaths among young children in the US,
they are a leading cause of death of children in developing countries [39].

3. Equilibria of the age-structured model

In this section we investigate the trivial (disease-free) equilibrium and the semitrivial
(dominance) equilibria of the age-structured model (2.3). The question of existence
of non-trivial (coexistence) equilibria is postponed till the next section. Equilibria are
time-independent but age-dependent solutions of the system (2.3). Setting the time
derivatives equal to zero we obtain a system of ordinary differential equations:

sa(a) = −λ1s(a) − λ2s(a) − µs(a), s(0) = B,

ia(a) = λ1s(a) − (µ + α1)i(a), i(0) = 0,(3.1)

ja(a) = λ2s(a) − (µ + α2)j(a), j(0) = 0.

If we treat λ1 and λ2 as known, the above equations can be explicitly solved. We first
find the expression for s,

(3.2) s(a) = Be−(λ+µ)a,

where λ = λ1+λ2. This expression upon substitution into the second and third equation
of (3.1) yields the following expressions for i and j,

i(a) = λ1Be−(µ+α1)a 1 − e−(λ−α1)a

λ − α1
,(3.3)

j(a) = λ2Be−(µ+α2)a 1 − e−(λ−α2)a

λ − α2
.(3.4)

Integrating (3.3) and (3.4) over a ∈ [0, +∞), we find

(3.5) I =
λ1B

(µ + α1)(µ + λ)
, J =

λ2B

(µ + α2)(µ + λ)
.
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Substituting these values into (2.2), we can express N in terms of λ1 and λ2 as

(3.6) N =
B

µ

(

1 −
1

µ + λ

( α1λ1

µ + α1
+

α2λ2

µ + α2

))

.

Finally, combining (3.3) and (3.4) and the definitions of λi, we obtain the following
equations for λ1 and λ2.

λ1 = λ1
B

N

∫

∞

0
β1(a)e−(µ+α1)a 1 − e−(λ−α1)a

λ − α1
da,(3.7)

λ2 = λ2
B

N

∫

∞

0
β2(a)e−(µ+α2)a 1 − e−(λ−α2)a

λ − α2
da.(3.8)

Replacing the value of N with (3.6) and rearranging terms we obtain the following
equations for λ1 and λ2.

λ1

(

1 −
1

µ + λ

( α1λ1

µ + α1
+

α2λ2

µ + α2

))

= λ1µ

∫

∞

0
β1(a)e−(µ+α1)a 1 − e−(λ−α1)a

λ − α1
da,(3.9)

λ2

(

1 −
1

µ + λ

( α1λ1

µ + α1
+

α2λ2

µ + α2

))

= λ2µ

∫

∞

0
β2(a)e−(µ+α2)a 1 − e−(λ−α2)a

λ − α2
da.(3.10)

We distinguish three types of equilibria: First, the trivial or disease-free equilibrium
(λ1 = λ2 = 0), given by E0 = (0, 0). In the disease-free equilibrium we have i(a) =
j(a) = 0. This equilibrium clearly always exists. The conditions for stability and loss of
stability of the disease-free equilibrium lead to the definition of the reproduction numbers
of the two strains. These stability conditions for each strain can be obtained much along
the lines in [9]. Following the procedure there leads to

(3.11) R1 =
B

N∗

∫

∞

0
β1(a)e−µa 1 − e−α1a

α1
da R2 =

B

N∗

∫

∞

0
β2(a)e−µa 1 − e−α2a

α2
da

where N∗ is the total population size at the disease free equilibrium, that is, N∗ = B/µ.
The coefficient in front of the integrals can be simplified to B/N∗ = µ but we will retain
it as B/N∗ so that the reproduction numbers and the invasion reproduction numbers
introduced in the next section have the same form.

Second, the boundary or dominance equilibria for which only one of λi is zero. The
dominance equilibrium of the first strain is denoted by E1 = (λ∗

1, 0) and the dominance
equilibrium of the second strain is denoted by E2 = (0, λ∗

2). Finally, the nontrivial or
coexistence equilibria where both infectious classes are positive (λ1, λ2 > 0), given by
E∗∗ = (λ∗∗

1 , λ∗∗

2 ).
To study semitrivial and nontrivial equilibria, we first divide both sides of the first

equation above by λ1 and both sides of equation two by λ2. Furthermore, it is more
convenient to rewrite the system (3.9)-(3.10) in the form

γ1λ1 + γ2λ2 = (µ + λ)
(

1 − µ

∫

∞

0
β1(a)e−(µ+α1)a 1 − e−(λ−α1)a

λ − α1
da

)

=: F1(λ),(3.12)

γ1λ1 + γ2λ2 = (µ + λ)
(

1 − µ

∫

∞

0
β2(a)e−(µ+α2)a 1 − e−(λ−α2)a

λ − α2
da

)

=: F2(λ),(3.13)

where we have introduced the quantities γi = αi

µ+αi
which represent the fraction of hosts

infected with strain i that die due to infection. For instance, equation (3.12) alone can
be used to find the semitrivial equilibria E1 = (λ∗

1, 0) which correspond to the positive



The impact of host age-structure on coexistence 7

roots λ∗

1 of

(3.14) γ1 = (1 +
µ

λ1
)
(

1 − µ

∫

∞

0
β1(a)e−(µ+α1)a 1 − e−(λ1−α1)a

λ1 − α1
da

)

=:
F1(λ1)

λ1
.

With a minimal amount of analysis, one can see that the function F1(λ1) is monotonically

increasing with limλ1→∞

F1(λ1)
λ1

= 1 and that the sign of F1(0) = µ(1−R1) is determined

by the magnitude of the reproduction number of the first strain (3.11). If R1 > 1, then
equation (3.14) must have at least one positive root. Indeed, in this case the set of all
possible values for F1(λ1)/λ1 for λ1 > 0 is the interval (−∞, 1), while the left hand side
of (3.14) is a constant γ1 < 1. Existence of at least one positive root λ∗

1 follows from
continuity of both sides of (3.14).

We summarize this result in the following theorem.

Theorem 3.1. If R1 > 1 then there exists at least one dominance equilibrium of strain

one at E1 = (λ∗

1, 0). Analogously, if R2 > 1 then there exists at least one dominance

equilibrium of strain two at E2 = (0, λ∗

2).

We remark that λ∗

i (for i = 1, 2) is the time-independent value of λi(t) at an equilib-
rium; both are assumed nonzero.

4. Coexistence

Coexistence depends not so much on the reproduction numbers but on the invasion

reproduction numbers. The invasion reproduction number of, say, the first strain R̂1 gives
the number of secondary infections that one individual infected with the first strain can
produce in a population where the second strain is already present and at equilibrium
during the infected period. Technically, this number is computed the same way as the
reproduction number but instead of being evaluated at the disease-free equilibrium, it is
evaluated at the equilibrium abundance of strain two [40]. We say that the first strain can

invade the equilibrium of the second strain if R̂1 > 1, because in this case the growth rate
of the first strain in the population where the second strain is at equilibrium is positive.
The invasion reproduction number of the second strain R̂2 is defined analogously; the
second strain can invade the equilibrium of the first if R̂2 > 1. Coexistence, and in
particular stable coexistence, occurs when each strain can invade the equilibrium of the
other, that is, when R̂1 > 1 and R̂2 > 1.

The invasion reproduction numbers of the system (2.1) without age-structure are given

by R̂1 = R1/R2 and R̂2 = R2/R1. Thus, R̂1 > 1 if and only if R̂2 < 1, hence coexistence
does not occur. With age-structure, the invasion reproduction numbers of the system
(2.3) depend on the corresponding dominance equilibria.

The invasion reproduction number of the first strain at the equilibrium of the second
strain E2 = (0, λ∗

2) is given by

(4.1) R̂1 =
B

N∗

2

∫

∞

0
β1(a)e−(µ+α1)a 1 − e−(λ∗

2
−α1)a

λ∗

2 − α1
da

where N∗

2 is the equilibrium value of the total population when the second strain is at
equilibrium. This quantity is obtained from (3.7) after cancelling λ1 from both sides
and taking λ1 = 0 and λ2 = λ∗

2. Analogously, the invasion reproduction number of the
second strain at the equilibrium of the first strain E1 = (λ∗

1, 0) is given by

(4.2) R̂2 =
B

N∗

1

∫

∞

0
β2(a)e−(µ+α2)a 1 − e−(λ∗

1
−α2)a

λ∗

1 − α2
da
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Figure 1. The graphs of the functions F1(λ)/λ and F2(λ)/λ in case
when γ1 > γ2 and both semitrivial equilibria are unique. The particular
disposition of the curves corresponds to the case when F1(λ

∗

2)/λ∗

2 < γ2

(that is, R̂1 > 1) and F2(λ
∗

1)/λ∗

1 < γ1 (that is, R̂2 > 1). Existence of the
appropriate intersection is evident. Parameter values used in the figure
are as follows: µ = 0.1, α1 = 0.1, α2 = 0.01, and the two transmission
rates are set by β1(a) = e0.15a(a−10)(15−a)/1.32261 if 10 ≤ a ≤ 15 (and
zero otherwise) and β2(a) = e−a(a − 1)(10 − a)/0.196222 if 1 ≤ a ≤ 10
(and zero otherwise).

where N∗

1 is the equilibrium value of the total population when the first strain is at
equilibrium. Again, this is obtained from (3.8) after cancelling λ2 from both sides and
taking λ1 = λ∗

1 and λ2 = 0.
To investigate the existence of the nontrivial equilibria, E∗∗ = (λ∗∗

1 , λ∗∗

2 ), we observe
that λ∗∗

1 > 0 and λ∗∗

2 > 0 must satisfy the system of equations (3.9) and (3.10), which
can be rewritten in the following concise form:

(4.3) γ1λ1 + γ2λ2 = F1(λ) = F2(λ), λ1 + λ2 = λ,

where γ1 = α1/(µ + α1) < 1, γ2 = α2/(µ + α2) < 1 and F1(λ) and F2(λ) are two
functions defined in (3.12) and (3.13). Dividing all sides of this equation by λ we see
that its left-hand side is a convex combination of the values γ1 and γ2 and as such takes
any value in the interval between the minimum of γ1 and γ2 and the maximum of γ1

and γ2. Consequently, equations (4.3) are consistent if and only if there exists a positive
number λ∗∗ such that

F1(λ
∗∗)

λ∗∗
=

F2(λ
∗∗)

λ∗∗
∈ (min{γ1, γ2}, max{γ1, γ2}),

that is if the two curves F1(λ)/λ and F2(λ)/λ intersect between the lines Γ1 : y = γ1 and
Γ2 : y = γ2 (see Figure 1). To demonstrate that this observation implies coexistence, let
us consider without loss of generality the case γ1 > γ2, as is the case in Figure 1.

In this section we assume that R1 > 1 and R2 > 1 and that both dominance equilibria
that exist are unique. Figure 1 gives the graphs of the functions F1(λ)/λ and F2(λ)/λ.
The first key observation following from equation (3.14) is that the equilibrium value λ∗

1
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at the dominance equilibrium E1 satisfies the equation

F1(λ
∗

1)

λ∗

1

= γ1

and is therefore obtained from the intersection of the graph of F1(λ)/λ with the horizontal
line Γ1 (see Figure 1). Similarly, the equilibrium value λ∗

2 in the dominance equilibrium
E2 satisfies the equation

F2(λ
∗

2)

λ∗

2

= γ2

and is obtained from the intersection of the graph of F2(λ)/λ with the horizontal line
Γ2. We consider two separate groups of assumptions that can each lead to coexistence:

1) Assume first that R̂1 > 1 and R̂2 > 1. The conditions that both invasion
reproduction numbers are larger than one are equivalent correspondingly to

F1(λ
∗

2)

λ∗

2

< γ2 and
F2(λ

∗

1)

λ∗

1

< γ1.

These inequalities in turn imply that λ∗

2 < λ∗

1 because if the reversed inequality
holds, the function F1(λ)/λ would cross the line Γ1 at λ∗

1 and become larger than
γ1. In order for this function to be smaller than γ2 later at λ∗

2, it would have
to cross the line Γ1 again, which contradicts the assumption that this crossing is
unique. Furthermore, since at λ∗

2 the value of F1(λ)/λ is smaller than the value
of the function F2(λ)/λ (which is equal to γ2), while at λ∗

1 the value of F2(λ)/λ
is smaller than the value of the function F1(λ)/λ (which is equal to γ1), the
graphs of these two functions must intersect for some λ∗∗ in the interval (λ∗

1, λ
∗

1).
Their common value lies somewhere in the interval (γ2, γ1). This implies that
λ∗∗ satisfies all conditions, that is, coexistence occurs (see Figure 1).

2) Assume next that R̂1 < 1 and R̂2 < 1. The conditions that both invasion
reproduction numbers are smaller than one are equivalent correspondingly to

F1(λ
∗

2)

λ∗

2

> γ2 and
F2(λ

∗

1)

λ∗

1

> γ1.

Similar arguments as in the previous paragraph show that the curves F1(λ)/λ
and F2(λ)/λ must intersect so that their common value is somewhere in the
interval (γ2, γ1). Therefore, a coexistence equilibrium also exists in this case.

We summarize these findings in the following theorem:

Theorem 4.1. Assume R1 > 1 and R2 > 1 and that both semitrivial equilibria E1 and

E2 are unique. Then there is a coexistence equilibrium if and only if either both invasion

reproduction numbers are larger than one or both invasion reproduction numbers are

smaller than one.

This theorem states that the age-structured model (2.3) has a coexistence equilibrium,
while the corresponding age-independent model (2.1) does not. Thus host age-structure
plays the role of a trade-off mechanism that permits the two strains to coexist. It is
interesting to know what other features of the model (2.3) allow for that coexistence.
One feature that is absolutely necessary is the frequency-dependent force of infection. If
the force of infection in the model (2.3) were replaced by

λ̃1(t) =

∫

∞

0
β1(a)i(a, t) da, λ̃2(t) =

∫

∞

0
β2(a)j(a, t) da

then coexistence cannot occur regardless of the magnitude of virulence. One can see
this by examining equations (3.9) and (3.10). After canceling λ1 in equation (3.9) and
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Figure 2. The graphs of the functions F1(λ)/λ and F2(λ)/λ in case
when γ1 > γ2 and both semitrivial equilibria are unique. In this case as
in Figure 1 we have R̂1 > 1 and R̂2 > 1. The two curves intersect at
λ∗∗ = (λ∗∗

1 , λ∗∗

2 ) and between the lines Γ2 and Γ1. Coexistence occurs
when transmission and virulence are in trade-off: β1(a) > β2(a) and
α1 > α2 even though β1(a) is age-independent. Parameter values used
are as follows: µ = 0.1, α1 = 1.0, α2 = 0.01. The transmission rate of the
first strain is constant β1(a) = 3.125 while the transmission rate of the
second strain declines exponentially with age: β2(a) = e−0.15a.

λ2 in equation (3.10) we have that their right-hand sides have to be equal to one. Both
resulting equations have a unique solution, say λ∗

1 and λ∗

2 which in general are different.
Thus they cannot be satisfied for a unique value of λ, and are inconsistent as a system.
Coexistence cannot occur except in the degenerate case λ∗

1 = λ∗

2.
One other constraint on coexistence is that if there is no virulence in the original

system (2.3), that is if α1 = 0 and α2 = 0, there will be no coexistence. In the case of
non-virulent strains the total population size is asymptotically constant, and the system
behaves as if it were a constant. A similar argument as given before shows that there is
no coexistence. (In these cases when we say that there is no coexistence, we mean that
there is no coexistence equilibrium outside of the case R1 = R2.)

In the example of Figure 1 the transmission rates of the two strains have disjoint
support, that is the two strains are transmitted for different ages of the host, so there
is a complete niche partitioning by age. Is such complete partitioning necessary for
coexistence to occur? In fact, coexistence is possible under a great variety of functions
describing age-dependent transmission rates of the two strains. One particular case
that is of interest is when one of the strains is transmitted better at all host ages,
say the transmission rate of the first strain is higher than the transmission rate of the
second strain: β1(a) ≥ β2(a). Can coexistence still occur? It turns out that the answer
depends on the virulence of the strains. From equations (3.11) it can be seen that if
the transmission rate decreases, while virulence stays fixed, the reproduction number of
the strain decreases. The reproduction number also decreases when transmission rate
decreases and virulence increases. In this case, we say that transmission and virulence act
synergistically on the reproduction number. On the other hand, when transmission rate
decreases and virulence decreases, then the impact on the reproduction number is not
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Figure 3. The graph of the total number of infected with the first
strain I(t) and the total number of infected with the second strain J(t)
are plotted as functions of time. Both stabilize at non-zero values, that
is, the two strains coexist in the population. Parameters are chosen as in
Figure 1.

clear, and, in particular, the reproduction number may remain unchanged. In this case we
say that transmission and virulence act as trade-offs. These changes in transmission rates
and virulence have similar impact (actually exactly opposite in direction) on the functions
F1(λ) and F2(λ). Consequently, if transmission and virulence act synergistically, that is,
β1(a) ≥ β2(a) and α1 < α2, then F1(λ) < F2(λ) for all λ. This, in particular means that
the two functions cannot intersect and there is no coexistence. On the other hand, when
transmission and virulence experience a trade-off, that is, β1(a) ≥ β2(a) and α1 > α2,
then the impact on the functions F1 and F2 is unclear and coexistence may occur. We
illustrate this scenario with an example in Figure 2 where we have also taken β1(a) to
be constant. We summarize these observations in the following proposition.

Proposition 4.2. Suppose for all host’s ages the first pathogen has a higher transmission

rate than the second: β1(a) ≥ β2(a).

(1) If α1 > α2 then coexistence is possible.

(2) If α1 < α2 then coexistence is not possible.

Numerical investigations reveal that the coexistence equilibrium that occurs when
R̂1 > 1 and R̂2 > 1 is typically locally stable and results in the dynamical outcome of
epidemiological coexistence of the two strains (see Figure 3 for a numerical example).
Each strain can increase when rare and the other is at equilibrium, so the coexistence is
robust. (Our numerical studies always showed asymptotic approach to a stable coexis-

tence equilibrium.) The coexistence equilibrium that occurs when R̂1 < 1 and R̂2 < 1
by contrast is unstable and the dynamical outcome of coexistence cannot be observed.
Instead, in the corresponding parameter region, the model exhibits bistable dominance,
that is, competitive exclusion occurs where one or the other pathogen type dominates
depending on the initial conditions [33]. Clearly, under the scenario of bistable domi-
nance, it is possible that the strain with the lower reproduction number can eliminate
the strain with the higher reproduction number and dominate in the population, given
appropriate initial conditions. The presence of a region where both invasion numbers
are below one is usually associated with a region in a parameter space where the strain
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with suboptimal reproduction number dominates independently of the initial conditions.
This phenomenon of a priority effect in competition, which contrasts with the compet-
itive exclusion principle, occurs when point coexistence is possible, and particularly in
the case when one or both of the boundaries of coexistence in the (R1,R2) plane cross
the bisector R1 = R2 (see [33] for a specific example). Dominance of a strain with sub-
optimal reproduction number independently of the initial conditions is possible in the
model (2.3) and has been observed previously in conjunction with various alternative
mechanisms that also lead to coexistence such as superinfection [37], coinfection [33],
and mixed vertical and horizontal transmission [31].

5. Subthreshold dominance and coexistence

The dependence of the transmission rate in the model (2.3) on the host’s chronological
age leads to a model which although a very simple extension of its age-independent ODE
counterpart (2.1) generates a much richer array of dynamical outcomes. For instance,
model (2.1) only has one dominance equilibrium corresponding to each strain persisting
(with the other being excluded) when the corresponding reproduction number is above
one, which we refer to as superthreshold. In contrast, in the age-structured scenario,
there might also be dominance equilibria occurring when the reproduction numbers are
below one, which we refer to as subthreshold. As mentioned before, the λ∗

1 value of the
dominance equilibrium E1 = (λ∗

1, 0) is obtained as a solution of the equation F1(λ)/λ =
γ1, while the λ∗

2 value of the dominance equilibrium E2 = (0, λ∗

2) is obtained as a solution
of the equation F2(λ)/λ = γ2. Since the question of existence of dominance equilibria is
symmetric for the two strains, we discuss it for strain one only.

In the subthreshold case R1 < 1, the function F1(λ1) is positive for all λ1 > 0.
Furthermore, limλ1→0 F1(λ1)/λ1 = +∞ and also limλ1→∞ F1(λ1)/λ1 = 1. Introducing
m to be the infimum of the function F1(λ1)/λ1 for all λ1 > 0, we observe that m ≤ 1,
and m is the true minimal value whenever m < 1. It easily follows that the equation
F1(λ)/λ = γ1 admits an even number of positive roots (corresponding to subthreshold

semitrivial equilibria) if and only if m < γ1. This scenario is illustrated in Figure 4.
In the previous section we showed that coexistence occurs in a superthreshold case, that

is, when the reproduction numbers of both pathogen variants are above one. However,
model (2.3) allows also for subthreshold coexistence. Because coexistence depends on
the reproduction numbers and the invasion reproduction numbers of all strains present,
there are two basic types of subthreshold coexistence equilibria: weakly subthreshold

coexistence equilibria – these occur when at least one but not all reproduction numbers
are below one, and strongly subthreshold coexistence equilibria – those occur when all
reproduction numbers are below one.

Both weakly subthreshold and strongly subthreshold coexistence equilibria occur in
model (2.3). To see the presence of weakly subthreshold coexistence equilibria, assume
again without loss of generality that γ1 > γ2. Two cases are possible:

1) R1 > 1 and R2 < 1. In this case the graph of F1(λ)/λ has the general form
shown in Figure 1 and we assume the resulting dominance equilibrium of strain
one is unique. On the other hand, the graph of F2(λ)/λ has the form shown in
Figure 4 and may or may not cross the line Γ2. Assume it does not cross that line,
that is, there are no associated subthreshold dominance equilibria of strain two.
Then there is a unique weakly subthreshold coexistence equilibrium if and only
if R̂2 > 1 (see Figure 5). We expect that this coexistence equilibrium is locally
stable at least for some parameter values because the second strain can invade
the stable equilibrium of the first. Under this scenario the first strain which can
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Figure 4. The graph of the function F1(λ)/λ in the subthreshold case,
that is, when R1 < 1. It intersects the horizontal line Γ1 at two points
which give two subthreshold dominance equilibria of the first strain E11 =
(λ∗

11, 0) and E12 = (λ∗

12, 0). The parameters are chosen as follows: µ = 1,
α1 = 5, β1(a) = 12.87e−a.

exist alone superthreshold induces the second strain, which cannot persist alone,
to coexist with it even when the reproduction number of the second strain is
below one. We note that the virulence of the “induced” strain two corresponds
to γ2 and is lower than the virulence of the strain that can persist by itself,
related to γ1.

2) R1 < 1 and R2 > 1. In this case the graph of F1(λ)/λ has the general form of
that in Figure 4 and we assume that it intersects the line Γ1 (otherwise there
will be no coexistence). The two intersections result in two dominance equilibria
of strain one E11 = (λ∗

11, 0) and E12 = (λ∗

12, 0). On the other hand, the graph of
F2(λ)/λ has the form in Figure 1 and crosses both the line Γ2 and the line Γ1.
Then there is a unique weakly subthreshold coexistence equilibrium if and only if
R̂1 < 1, R̂2(E11) > 1 and R̂2(E12) < 1. We note that the inequality R̂2(E11) > 1

is equivalent to F2(λ
∗

11)/λ∗

11 < γ1 while the inequality R̂2(E12) < 1 is equivalent
to F2(λ

∗

12)/λ∗

12 > γ1. We conjecture that the coexistence equilibrium that results
is, however, unstable because neither strain can invade the stable equilibrium of
the other.

We now focus on the strongly subthreshold equilibria. Many times neither micropar-
asite can persist subthreshold by itself, however they can persist strongly subthreshold
by coexisting [33]. We call this type of strong coexistence cooperative subthreshold coex-

istence. Strong cooperative subthreshold coexistence does not occur in the model (2.3).
This is not hard to see. In the case when R1 < 1 and R2 < 1 both curves F1(λ)/λ and
F2(λ)/λ will have the form in Figure 4. Assuming again without loss of generality that
γ1 > γ2, the two curves can intersect in the interval (γ2, γ1) if both cross the line Γ1 to
go below it. That means that the equation F1(λ)/λ = γ1 will have two solutions and
there will be two subthreshold dominance equilibria of the first strain.

Another interesting scenario, worth mentioning, is the case when one of the pathogen
variants can exist subthreshold by itself but the other one cannot. In this case it is
possible that the first strain can mediate the existence of the second strain subthreshold
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Figure 5. The graphs of the functions F1(λ)/λ and F2(λ)/λ in the
weakly subthreshold case, when R1 > 1 and R2 < 1. The two functions
intersect between the lines Γ1 : y = γ1 and Γ2 : y = γ2 to form a
unique strongly subthreshold coexistence equilibrium E∗∗ = (λ∗∗

1 , λ∗∗

2 ),
denoted by λ∗∗ in the Figure. There is also a unique superthreshold
equilibrium E = (λ∗

1, 0) obtained when the graph of F1(λ)/λ crosses the
line Γ1. The parameters are chosen as follows: µ = 1, α1 = 6, α2 = 0.1,
β1(a) = 16.55e−a, β2(a) = 25.5 sin(a) for 0 ≤ a ≤ π/6 and zero otherwise.

in the form of strongly subthreshold coexistence. We call this effect induced strongly

subthreshold coexistence. This effect is possible in the model (2.3). We illustrate it in
Figure 6, which shows the graphs of the functions F1(λ)/λ and F2(λ)/λ in the strongly
subthreshold case, that is, when R1 < 1 and R2 < 1. The graph of the function
F1(λ)/λ intersects the horizontal line Γ1 in two points which give two subthreshold
dominance equilibria of the first strain E11 = (λ∗

11, 0) and E12 = (λ∗

12, 0). Typically, E11

is unstable while E12 is locally stable [34]. The graph of the function F2(λ)/λ does not
intersect the line Γ2 so the second strain cannot dominate by itself when R2 < 1. The
graphs of F1(λ)/λ and F2(λ)/λ intersect in the interval (γ2, γ1) giving rise to a unique
coexistence equilibrium E∗∗ = (λ∗∗

1 , λ∗∗

2 ). We note that F2(λ
∗

11)/λ∗

11 > γ1, or equivalently,

R̂2(E11) < 1 and that F2(λ
∗

12)/λ∗

12 < γ1, or equivalently, R̂2(E12) > 1. These conditions
guarantee the presence of a coexistence equilibrium. We surmise that this coexistence
equilibrium is locally stable since the second strain can invade the stable equilibrium of
the first strain. We note that the “induced” strain, strain two, always has lower virulence
than the pathogen variant that can persist subthreshold by itself (see Figure 6 and note
that the induced strain has virulence corresponding to γ2 and γ2 < γ1). Thus, with
host-age structure as a mechanism that leads to coexistence a less virulent strain cannot
cause a more virulent strain to persist subthreshold, unless the more virulent strain can
also persist by itself.

Many more scenarios are theoretically possible. The ones we have included so far
testify to the emergent dynamical complexity of the model (2.3), arising because host
age structure is a dependent feature of the system.
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Figure 6. The graphs of the functions F1(λ)/λ and F2(λ)/λ in the
strongly subthreshold case, that is, when R1 < 1 and R2 < 1. The two
functions intersect between the lines Γ1 and Γ2 to form a unique strongly
subthreshold coexistence equilibrium E∗∗ = (λ∗∗

1 , λ∗∗

2 ), denoted by λ∗∗

in the Figure. The parameters are chosen as follows: µ = 1, α1 = 6,
α2 = 0.1, β1(a) = 14.95e−a, β2(a) = 25.5 sin(a) for 0 ≤ a ≤ π/6 and zero
otherwise.

6. Conclusions

Stable coexistence of pathogen variants permits maintainance of the diversity of mi-
croorganisms. Although under the most general conditions a competitive exclusion prin-
ciple is valid [7], strains can coexist if some trade-off mechanism moderates competition.
Polymorphism of two or more types has been found to stem from within-host interactions
among the strains. One such mechanism is co-infection, where one host is simultane-
ously infected with two or more variants that coexist within the host [36]. Another
such mechanism is super-infection. In super-infection a host infected with one pathogen
strain becomes infected with another strain. The second strain wins the within-host
competition and then takes over the host. Super-infection can lead to coexistence of the
pathogens at the population level [37, 35]. Within-host mutation of one pathogen into
another variant has also been found on several occasions to lead to coexistence of the
wild type and the mutant [6, 29] in a selection-mutation balance. Another mechanism
of coexistence involves heterogeneity among the hosts, such as in [5, 17] where the in-
complete drug-treatment of tuberculosis permits hosts infected with the wild strain to
become infected with a drug-resistant strain. Cross-immunity can also have significant
impact on the competitive outcome. For instance, it has been shown that while strains
that impart strong cross-immunity tend to eliminate each other, strains that impart weak
cross-immunity are more likely to coexist [38, 28]. Cross-immunity has been observed
to lead to coexistence in models of influenza [10, 11, 3] and dengue [18, 16]. Another
group of mechanisms that result in coexistence stems from external demographic factors.
Lipsitch and Nowak [30] demonstrated that the competitive exclusion principle is not
valid and coexistence of two pathogen variants may be possible if the baseline popula-
tion experiences exponential growth. Andreasen and Pugliese observed coexistence in
a two-strain epidemic model with density-dependent natural mortality of the host [4].
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More recently this framework has been extended to density-dependent recruitment and
mortality, leading to coexistence of two genotypes [1].

In this paper we have introduced and investigated a mathematical model which seeks
to elucidate the role of host age in fostering microparasite polymorphism. We incorporate
host age only in infectivity, but similar effects might be possible if other pathogen-related
epidemiological characteristics, such as virulence, or susceptibility, are age dependent.
We find that in contrast to the age-independent case where a competitive exclusion
principle is valid, the effect of age is to permit both coexistence and competitive exclusion.
We show that coexistence occurs superthreshold when each pathogen variant can invade
the equilibrium of the other. Mutual invasion of equilibria is possible in the structured
case because disease-induced mortality creates dependence of the total population size
and its age structure on the prevalence of infected individuals with each strain (see (2.2)),
and therefore, on the force of infection. This, in turn, through the proportionate mixing
incidence creates a non-monotone dependence of the invasion reproduction number of
each strain on the equilibrium force of infection of the other. In other words, with
age structure present, if the force of infection is assumed to be of the (pseudo) mass-
action type and/or there is no disease-induced mortality (α1 = α2 = 0) stable equilibrial
coexistence in model (2.3) will not occur. The introduction of age structure leads to
mutual invasibility and coexistence and can generate a diversity of dynamical outcomes.

We summarize what we have found below:

(1) We find that multiple subthreshold equilibria of each strain alone exist, possibly
as a result of backward bifurcation. These equilibria will be present even if
a second strain is not included in the model. Multiple subthreshold equilibria
resulting from backward bifurcation have been found in a chronological age-
structured model before [12], but in our case they do not occur without the
age-structure. Thus, host age-structure is a primary causal mechanism for the
subthreshold equilibria. Since it is well known that disease transmission models
with multiple susceptible compartments and proportionate mixing incidence may
possess multiple equilibria, it is reasonable to expect such in the age-structured
model (2.3). We want to note, however, that usually the different susceptible
compartments are associated with different susceptibilities, while in our case all
susceptible individuals have the same, age-independent susceptibility.

(2) We find that if neither strain can persist subthreshold alone, then they cannot
coexist in a strongly subthreshold mode, that is, when both reproduction num-
bers are below one. We conclude that cooperative coexistence in the model (2.3)
is not possible.

(3) On the other hand, the strains can coexist in a weakly subthreshold coexistence,
that is, when only one of the reproduction numbers is below one. When the strain
with higher virulence has a reproduction number above one it can “induce” the
strain with lower virulence and reproduction number below one to coexist with it
in what we expect is a stable equilibrium. When the strain with higher virulence
has a reproduction number below one, the resulting coexistence equilibrium is
unstable – stable coexistence does not occur.

(4) Strongly subthreshold coexistence is possible under the following scenario: one
of the strains can exist subthreshold by itself, but the other one cannot. We
find that the strain that can persist subthreshold by itself can “induce” the
other strain to exist in a stable coexistence equilibrium if the second strain can
invade the stable equilibrium of the first strain, but it cannot invade the unstable
equilibrium of the first strain.
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(5) When a strain that can persist alone allows another strain that cannot persist
alone, to persist in a coexistence mode the “induced” strain always has lower
virulence than the “inducing” strain.

(6) When one of the strains eliminates the other, in most cases the strain with the
larger reproduction number will persist in the population. However, there are
exceptions, where the strain with the larger reproduction number will be elim-
inated and the strain with the suboptimal reproduction number will dominate.
Two modes lead to this scenario. The first mode is bistable dominance (“priority
effects”), when the dominant strain is determined by the initial conditions. The
second mode is when the dominance equilibrium of the strain with the suboptimal
reproduction number is the locally stable one, that is, when it cannot be invaded
by the strain with the larger reproduction number. This phenomenon is observed
when coexistence occurs, although not all trade-off mechanisms that cause coex-
istence also lead to dominance of a strain with suboptimal reproduction number,
even in very complex models [38].

(7) Finally, we have shown that age structure can permit stable coexistence of
pathogen strains for proportionate mixing incidence (frequency dependent trans-
mission) but not for mass-action incidence (density dependent transmission).

Multiple equilibria with alternating stability behavior have not been detected to date
in epidemiology, despite the extensive theoretical literature that predicts their existence
(see [34] and the references there in). Empirical evidence for their occurrence in nature
has been found in the context of metapopulation dynamics [23]. Conceivably, several
populations, each of which exhibiting multiple equilibria can be interacting. Whether
these are metapopulations, populations in ecological or epidemiological context, in order
to explain the interplay between coexistence and extinction resulting from their interac-
tion we need to know what invasibility criteria govern the outcome. ¿From a theoretical
perspective, an interesting question that we have touched on but remains largely not un-
derstood is: if multiple dominance equilibria are present (subthreshold or superthresh-
old), what invasibility conditions guarantee coexistence, and when is this coexistence
stable and when – unstable? This remains a challenge for future explorations.

In conclusion, we mention that in this paper we allow only the infectivity of infectious
individuals with strain one and strain two to vary with age. All other parameters in
the age-structured model (2.3) are assumed constant. Clearly, our results will extend
to the case when in addition to infectivity, we also allow other parameters in the model
to vary with age, such as susceptibility of susceptible individuals, disease-induced death
rates and/or natural death rate. A more interesting question to be addressed is: What if
we assume all parameters constant (including infectivity) except, say the susceptibilities
to the two strains of susceptible individuals, which are assumed age-dependent. Would
coexistence and multiple equilibria still occur? The analysis in this paper cannot be
easily adapted to answer that question. Different approach may be necessary, possibly
one based entirely on simulations. We believe that the answer this question is yes,
but further investigations are required to confirm or rule out coexistence and multiple
equilibria due to other modes of age dependent variation.
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