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Abstract

A two-strain avian influenza model with distributed delay and environmental spread in

humans is investigated. The model describes well the transmission of avian influenza between

poultry and humans. In this study, we introduce the behavior of both high pathogenic avian

influenza (HPAI) as strain two and low pathogenic avian influenza (LPAI) as strain one in a

domestic poultry population. We also include the distribution of the strain two through the

contaminated environment. We compute the strain reproduction numbers R1, R2 and the

invasion R̂1, R̂2. We find that besides the disease-free equilibrium, there exist a dominance

equilibrium for each strain and many coexistence equilibrium of both strain one and strain

two if R1 = R2. Using a Lyapunov functional, we are able to establish global stability of the

disease-free equilibrium if max{R1,R2} < 1. If Ri, the reproduction number of strain i is

larger than one, then a single-strain equilibrium, corresponding to strain i exists. This single-

strain equilibrium is locally stable whenever R̂i > 1. Using a Lyapunov functional, we establish

that the corresponding single-strain equilibrium εi is globally stable. When R1 = R2 > 1 and

R̂1 = R̂2 = 1, there are perhaps many coexistence equilibria of both strain one and strain two.
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Environmental transmission to humans may explain why avian influenza A (H7N9) virus has

appear in humans in different places in China in 2013 and 2014.

Key words: avian influenza, reproduction number, distributed delay, global stability, Lyapunov

function.
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1 Introduction

Avian Influenza (AI) virus chiefly infects birds, both wild and domestic. Avian influenza viruses of

H5 and H7 subtypes have high pathogenic (HPAI) and low pathogenic (LPAI) form. Both forms

infect poultry. Poultry infected with LPAI (strain one) show mild symptoms and recover. However,

HPAI (strain two) is generally extremely virulent to poultry, with mortality rate 90%-100%. HPAI

often kills chickens within two days of onset of symptoms. Highly pathogenic (strain two) H5N1

avian influenza have shown ability to transmit to humans and poses a big threat to public health

since it may mutate to a pandemic human H5N1 influenza strain [1].

Human infections with a new strain of the avian influenza A (H7N9) virus were first reported

in China in March in 2013. Most of these infections are believed to result from exposure to infected

poultry or contaminated environment, as H7N9 viruses have also been found in poultry in China.

While some mild illnesses in human H7N9 cases have been seen, most patients have had severe

respiratory illness, with about one-third resulting in death.

In two successive and increasing waves, this virus has moved across China and crossed the

Chinese border into Hong Kong, Taiwan and Malaysia. According to CDC it is possible that the

virus can appear in the US.

The persistence and the pandemic threat of avian influenza as well as the very publicized cholera

outbreak in Haiti have increased the awareness of diseases which transmit both directly and envi-

ronmentally. Many recent articles have been devoted to indirectly transmitted diseases [2,3,4,5,6].

In this article, we investigate a two-strain avian influenza model describing the transmission of avian

influenza between poultries and humans, including both direct and environmental transmission to

humans.

Our model was inspired by the model introduced in [7]. Compared to the model in [7], our model

includes distributed delay and the transmission between poultries and humans. Furthermore, we

consider the environmental transmission. Our results are focused on the number of the equilibria

and their local as well as global stabilities. While the authors of [7] mainly discuss the coexistence

of pathogen strains caused by culling in a influenza model.

This paper is structured as follows. In section 2, we introduce a two-strain avian influenza

model with distributed delay and environmental transmission. In section 3, we discuss the equilibria

and establish their local stabilities. In section 4, we establish global stability of the disease-free

equilibrium. In section 5, we use Lyapunov functional to derive the global stability of the single-

strain equilibrium. In section 6, we summarizes our results.
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2 The two-strain avian influenza model

As in the introduction, we assume the pathogen exists through two strains. LPAI is strain one and

HPAI is strain two. The two-strain model divides poultries under consideration into the following

groups: susceptible poultries, denoted by Sv(t), infected poultries with a strain i, denoted by

Ivi
(t) (i = 1, 2), and recovered poultries from strain one, denoted by Rv(t). If we let Nv(t) be the

total number of poultries at time t, We have Nv(t) = Sv(t) + Iv1
(t) + Iv2

(t) + Rv(t). Let Nh(t)

be the total number of humans at time t. Nh(t) is composed of the number of susceptible human

individuals Sh(t), the number of infective human individuals Ih(t), and the number of recovered or

immune humans individuals Rh(t). Thus, Nh(t) = Sh(t) + Ih(t) + Rh(t). Let E(t) be the number

of virions of strain two in the contaminated environment.

Because the dynamics of the virus in the human population is subjected to a significant influence

from the incubation period of the pathogen within humans and in reality the incubation period

is not a number but an interval during which the maturation of the parasite occurs in different

individuals, we incorporate distributed delay in the humans to account for the delays. Let τ be the

incubation period of the parasite in humans. Here, we assume that τ is distributed parameter (see

[8,9]). The model takes the form
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
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


















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



















dSv

dt
= Λv − βv1

SvIv1
− βv2

SvIv2
− µvSv,

dIv1

dt
= βv1

SvIv1
− (µv + rv)Iv1

,

dIv2

dt
= βv2

SvIv2
− (µv + αv)Iv2

,

dRv

dt
= rvIv1

− µvRv,

dE

dt
= δIv2

− γE,

dSh

dt
= Λh − βh1

Sh

∫ τ

0
f1(s)Iv2

(t− s)ds− βh2
Sh

∫ τ

0
f2(s)E(t− s)ds− µhSh,

dIh
dt

= βh1
Sh

∫ τ

0
f1(s)Iv2

(t− s)ds+ βh2
Sh

∫ τ

0
f2(s)E(t− s)ds− (µh + αh + rh)Ih,

dRh

dt
= rhIh − µhRh(t).

(2.1)

In model (2.1), Λh and Λv are the birth/recruitment rate of humans and poultry, βvi
is the transmis-

sion coefficient of strain i among poultry, i (i = 1, 2). Similarly, βh1
is the transmission coefficient

of strain two from poultry to humans. βh2
is the transmission rate to humans from the environ-

mental contamination. µh, µv are the natural death rates of humans and poultry, respectively.

rv, rh are the recovery rates of poultry and humans. αv, αh are the disease-induced death rates.

The kernel functions f1(τ), f2(τ) expresses the distributed infectivity toward susceptible individuals

during the infectious period of the surviving infectious poultries or the avian influenza virus in the

environment. The term

βh1
Sh(t)

∫ τ

0
f1(s)Iv2

(t− s)ds+ βh2
Sh(t)

∫ τ

0
f2(s)E(t− s)ds

gives the incidence of new cases of infection for humans at time t.
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To understand the model, notice that susceptible poultries are recruited at a rate Λv. Susceptible

poultries can become infected with strain i (i = 1, 2) through a direct contact with an infected

poultry with strain i. The infected poultries with strain one Iv1
can recover with recovery rate rv,

while the infected poultry with strain 2 may die with disease-induced death rate αv. In the same

time, susceptible human individuals are recruited at a rate Λh. Susceptible individuals can become

infected with strain two either through a direct contact with infected poultries infected with strain

two or through coming into contact with viral particles of strain two that are in the environment.

Furthermore, it is assumed that a susceptible poultry, who has been exposed, may remain exposed

for some period before becoming infectious and may have variable infectivity toward humans. As

a consequence, the force of infection on susceptible human individuals through direct or indirect

contact is given by the integral over all the incubation periods of the parasite in the poultry.

Infected humans have a recovery rate rh and move to the recovered class Rh(t). Others infected

humans may die with disease-induced death rate αh. Infected poultries with strain two shed the

virus into the environment at a rate δ. All viral particles shed by poultries infected with strain two

are given by δIv2
. We notice that the equations for the recovered poultries and recovered humans

are decoupled from the system and the analysis of system (2.1) is equivalent to the analysis of the

system.


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


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
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























dSv

dt
= Λv − βv1

SvIv1
− βv2

SvIv2
− µvSv,

dIv1

dt
= βv1

SvIv1
− (µv + rv)Iv1

,

dIv2

dt
= βv2

SvIv2
− (µv + αv)Iv2

,

dE

dt
= δIv2

− γE,

dSh

dt
= Λh − βh1

Sh

∫ τ

0
f1(s)Iv2

(t− s)ds− βh2
Sh

∫ τ

0
f2(s)E(t− s)ds− µhSh,

dIh
dt

= βh1
Sh

∫ τ

0
f1(s)Iv2

(t− s)ds+ βh2
Sh

∫ τ

0
f2(s)E(t− s)ds− (µh + αh + rh)Ih.

(2.2)

In the remainder of this article we will focus on model (2.2). Model (2.2) is equipped with the

following initial conditions:







Sv(0) = Sv0
, Iv1

(0) = Iv10
, Iv2

(θ) = ψv2
(θ),

Sh(0) = Sh0
, Ih(0) = Ih0

, E(θ) = ψE(θ), θ ∈ [−τ, 0].
(2.3)

All parameters in model (2.2) are non-negative. We define the following space of functions

X = R+ ×R+ ×

2
∏

i=1

(

C([−τ, 0],R+)

)

×R+ ×R+.

where the Banach space C([−τ, 0],R+) of continuous functions mapping the interval [−τ, 0] into

R+ is equipped with the sup-norm ||ψ|| = sup−τ≤θ≤0 |ψ(θ)|. By the standard theory of functional

differential equations [10], it can be verified that (2.2) with initial conditions (2.3) has a unique

solution (Sv(t), Iv1
(t), Iv2

(t), E(t), Sh(t), Ih(t)) which remains non-negative for all t ≥ 0. Moreover,
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we can show the solutions of system (2.2) are ultimately uniformly bounded in X. In fact, it follows

that the total poultry population size Nv(t) = Sv(t) + Iv1
(t) + Iv2

(t) satisfies

d

dt

(

Sv(t) + Iv1
(t) + Iv2

(t)

)

≤ Λv − µv

(

Sv(t) + Iv1
(t) + Iv2

(t)

)

Hence,

lim sup
t→∞

(

Sv(t) + Iv1
(t) + Iv2

(t)

)

=
Λv

µv
.

Similarly, the total human population size Nh(t) = Sh(t) + Ih(t) satisfies

d

dt

(

Sh(t) + Ih(t)

)

≤ Λh − µh

(

Sh(t) + Ih(t)

)

,

so we have

lim sup
t→∞

(

Sh(t) + Ih(t)

)

≤
Λh

µh

.

The free virus in the environment can be bounded as follows:

E′ ≤ δ
Λv

µv
− γE

Hence

lim sup
t→∞

E(t) ≤
δΛv

µv

γ
=
δΛv

γµv

.

Therefore, the following set is positively invariant for system (2.2)

Ω =

{

(Sv, Iv1
, Iv2

, E, Sh, Ih) ∈ X+ : ||Sv + Iv1
+ Iv2

|| ≤
Λv

µv
, ||Sh + Ih|| ≤

Λh

µh

, ||E(t)|| ≤
δΛv

γµv

}

.

All positive semi-orbits in Ω are precompact in X, and thus have non-empty ω-limit sets. We have

the following result.

Lemma 2.1 All positive semi-orbits in Ω have non-empty ω-limit sets.

Furthermore, we impose the following assumptions:

Assumptions 1:

1. It is assumed that f1(s), and f2(s) are continuous on [0, τ ];

2. f1(s), and f2(s) satisfy

∫ τ

0
f1(s)ds = a1,

∫ τ

0
f2(s)ds = a2;

3. f1(s) ≥ 0, f2(s) ≥ 0 for 0 ≤ s ≤ τ .

The reproduction number of strain one and two are given by the following expressions

R1 =
βv1

Λv

µv(µv + rv)
, R2 =

βv2
Λv

µv(µv + αv)
. (2.4)
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respectively. The system has a reproduction number defined as

R0 = max{R1,R2}.

We also introduce the invasion numbers of strain one and strain two. The invasion number of strain

one (two) at the equilibrium of strain two (one) is given by

R̂1 =
R1

R2
, R̂2 =

R2

R1
.

In the next section we compute explicit expressions for the equilibria and establish their local

stability.

3 Equilibria and their local stability

In the positively invariant region

Ω =

{

(Sv, Iv1
, Iv2

, E, Sh, Ih) ∈ X+ : ||Sv + Iv1
+ Iv2

|| ≤
Λv

µv
, ||Sh + Ih|| ≤

Λh

µh

, ||E(t)|| ≤
δΛv

γµv

}

,

system (2.2) always has a unique disease-free equilibrium E0, which is given by

E0 = (
Λv

µv
, 0, 0, 0,

Λh

µh

, 0)

In addition, for each i there is a corresponding single-strain equilibrium Ei given by

E1 = (S∗
v1
, I∗v1

, 0, 0, S∗
h1
, 0),

E2 = (S∗
v2
, 0, I∗v2

, E∗, S∗
h2
, I∗h),

where S∗
v1
, I∗v1

, S∗
h1
> 0 and S∗

v2
, I∗v2

, E∗, S∗
h2
, I∗h > 0 satisfy























Λv − βv1
S∗

v1
I∗v1

− µvS
∗
v1

= 0,

βv1
S∗

v1
I∗v1

− (µv + rv)I
∗
v1

= 0,

Λh − µhS
∗
h1

= 0,

(3.1)

and


















































Λv − βv2
S∗

v2
I∗v2

− µvS
∗
v2

= 0,

βv2
S∗

v2
I∗v2

− (µv + αv)I
∗
v2

= 0,

δI∗v2
− γE∗ = 0,

Λh − βh1
S∗

h2
I∗v2
a1 − βh2

S∗
h2
E∗a2 − µhS

∗
h2

= 0,

βh1
S∗

h2
I∗v2
a1 + βh2

S∗
h2
E∗a2 − (µh + αh + rh)I∗h = 0.

(3.2)

The non-zero components of the equilibrium Ej are given by

S∗
v1

=
µv + rv
βv1

, I∗v1
=

Λv

µv + rv
(1 −

1

R1
), S∗

h1
=

Λh

µh

,

S∗
v2

=
µv + αv

βv2

, I∗v2
=

Λv

µv + αv

(1 −
1

R2
), E∗ =

δ

γ
I∗v2

S∗
h2

=
Λh

βh1
I∗v2
a1 + βh2

E∗a2 + µh

, I∗h =
βh1

I∗v2
a1 + βh2

E∗a2

µh + αh + rh
S∗

h2
.
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The endemic equilibrium Ei exists if and only if Ri > 1. So we have the following Theorem 3.1 for

system (2.2)

Theorem 3.1 The model (2.2) has a unique dominance equilibrium of strain 1 and a unique

dominance equilibrium of strain 2. The unique dominance equilibrium E1 = (S∗
v1
, I∗v1

, 0, 0, S∗
h1
, 0) of

strain 1 exists if R1 > 1. Similarly, the unique dominance equilibrium E2 = (S∗
v2
, 0, I∗v2

, E∗, S∗
h2
, I∗h)

of strain 2 exists if R2 > 1.

Then the following result is established:

Theorem 3.2 If R1 = R2 > 1, R̂1 = R̂2 = 1, then there exist many coexistence equilibria

(S̄∗
v , Ī

∗
v1
, Ī∗v2

, Ē∗, S̄∗
h, Ī

∗
h), where

S̄∗
v = S∗

v1
= S∗

v2
, Ē∗ =

δ

γ
Ī∗v2
,

S̄∗
h =

Λh

βh1
Ī∗v2
a1 + βh2

Ē∗a2 + µh

,

Ī∗h =
βh1

Ī∗v2
a1 + βh2

Ē∗a2

µh + αh + rh
S̄∗

h

where Ī∗v1
and Ī∗v2

satisfy the following equation:

βv1
Ī∗v1

+ βv2
Ī∗v2

= βv1
I∗v1

= βv2
I∗v2

Proof. Let we assume that (S̄∗
v , Ī

∗
v1
, Ī∗v2

, Ē∗, S̄∗
h, Ī

∗
h) is an equilibrium of the system (2.2), then it

must satisfy the following system:































































Λv − βv1
S̄∗

v Ī
∗
v1

− βv2
S̄∗

v Ī
∗
v2

− µvS̄
∗
v = 0,

βv1
S̄∗

v Ī
∗
v1

− (µv + rv)Ī
∗
v1

= 0,

βv2
S̄∗

v Ī
∗
v2

− (µv + αv)Ī
∗
v2

= 0,

δĪ∗v2
− γĒ∗ = 0,

Λh − βh1
S̄∗

hĪ
∗
v2
a1 − βh2

S̄∗
hĒ

∗a2 − µhS̄
∗
h = 0,

βh1
S̄∗

hĪ
∗
v2
a1 + βh2

S̄∗
hĒ

∗a2 − (µh + αh + rh)Ī∗h = 0.

(3.3)

By the second and third equation of (3.3), we obtain

S̄∗
v =

µv + rv
βv1

=
µv + αv

βv2

Noticing that

S∗
v1

=
µv + rv
βv1

, S∗
v2

=
µv + αv

βv2

So we have

S̄∗
v = S∗

v1
= S∗

v2

From the first equation of (3.3), we have

Λv − µvS̄
∗
v = βv1

S̄∗
v Ī

∗
v1

+ βv2
S̄∗

v Ī
∗
v2
.
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Using the the first equation of (3.1), satisfied by equilibrium E1, we have the relation

Λv − µvS̄
∗
v = Λv − µvS

∗
v1

= βv1
S∗

v1
I∗v1

= βv1
S̄∗

vI
∗
v1

Then we obtain

βv1
S̄∗

vI
∗
v1

= βv1
S̄∗

v Ī
∗
v1

+ βv2
S̄∗

v Ī
∗
v2

We divide both sides by S̄∗
v ,

βv1
I∗v1

= βv1
Ī∗v1

+ βv2
Ī∗v2

Similarly, we have

βv2
I∗v2

= βv1
Ī∗v1

+ βv2
Ī∗v2

Thus Ī∗v1
and Ī∗v2

satisfy the following equation:

βv1
Ī∗v1

+ βv2
Ī∗v2

= βv1
I∗v1

= βv2
I∗v2
.

Similarly to E∗, S∗
h2
, I∗h, we can get Ē∗, S̄∗

h and Ī∗h.

Ē∗ =
δ

γ
Ī∗v2
,

S̄∗
h =

Λh

βh1
Ī∗v2
a1 + βh2

Ē∗a2 + µh

,

Ī∗h =
βh1

Ī∗v2
a1 + βh2

Ē∗a2

µh + αh + rh
S̄∗

h

Because there are many Ī∗v1
and Ī∗v2

that satisfy the equation βv1
Ī∗v1

+ βv2
Ī∗v2

= βv1
I∗v1

= βv2
I∗v2

,

there exist many coexistence equilibria. �

Now we are ready to establish the following result.

Theorem 3.3 If R0 = max{R1,R2} < 1, then the disease-free equilibrium E0 is locally asymptoti-

cally stable. If R0 > 1, then it is unstable.

Proof. In order to investigate the local stability of the model, let us first linearize system (2.2) at E0.

Let Sv(t) = Λv/µv+xv(t), Iv1
(t) = yv1

(t), Iv2
(t) = yv2

(t), E(t) = z(t), Sh(t) = Λh/µh+xh(t), Ih(t) =

yh(t). Thus, we obtain the following linearized system























































































dxv

dt
= −βv1

Λv

µv
yv1

− βv2

Λv

µv
yv2

− µvxv,

dyv1

dt
= βv1

Λv

µv

yv1
− (µv + rv)yv1

,

dyv2

dt
= βv2

Λv

µv

yv2
− (µv + αv)yv2

,

dz

dt
= δyv2

− γz,

dxh

dt
= −βh1

Λh

µh

∫ τ

0
f1(s)yv2

(t− s)ds− βh2

Λh

µh

∫ τ

0
f2(s)z(t− s)ds− µhxh,

dyh

dt
= βh1

Λh

µh

∫ τ

0
f1(s)yv2

(t− s)ds+ βh2

Λh

µh

∫ τ

0
f2(s)z(t− s)ds− (µh + αh + rh)yh.

(3.4)
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To study system (3.4), we notice that the system for xh and yh is decoupled from the equations for

xv, yv1
, yv2

and z. Hence, the equation for xh and yh are independent from the first to the fourth

equation. We investigate solutions of the form

xv(t) = xve
λt, yv1

(t) = yv1
eλt, yv2

(t) = yv2
eλt, z(t) = zeλt.

This leads to solving the following set of equations.



















































λxv = −βv1

Λv

µv

yv1
− βv2

Λv

µv

yv2
− µvxv,

λyv1
= βv1

Λv

µv

yv1
− (µv + rv)yv1

,

λyv2
= βv2

Λv

µv

yv2
− (µv + αv)yv2

,

λz = δyv2
− γz,

(3.5)

System (3.5) is a linear system. Thus, looking for eigenvalues in the model is equivalent to the

characteristic roots which are determined by the following equation:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ+ µv βv1

Λv

µv
βv2

Λv

µv
0

0 λ+ µv + rv − βv1

Λv

µv
0 0

0 0 λ+ µv + αv − βv2

Λv

µv
0

0 0 −δ λ+ γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ+ µv βv1

Λv

µv
βv2

Λv

µv
0

0 λ− (µv + rv)(R1 − 1) 0 0

0 0 λ− (µv + αv)(R2 − 1) 0

0 0 −δ λ+ γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

(3.6)

It is easy to obtain that the eigenvalues of system (2.2) are

λ1 = (µv + rv)(R1 − 1), λ2 = (µv + αv)(R2 − 1), λ3 = −µv, λ4 = −γ.

Note that if R0 = max{R1,R2} < 1, then, all the four eigenvalues λ1, λ2, λ3, λ4 < 0 are negative

real numbers. Therefore, the stability of E0 depends on the eigenvalues of the following system











dxh

dt
= −µhxh,

dyh

dt
= −(µh + αh + rh)yh.

It is easy to obtain that the eigenvalues are λ5 = −µh, λ6 = −(µh + αh + rh) < 0. Hence, all the

eigenvalues of system (2.2) are negative. Thus, the disease free equilibrium is locally asymptotically

stable for max{R1,R2} < 1. However, when max{R1,R2} > 1, we have λ1 or λ2 > 0. Hence, the

disease-free equilibrium is unstable for max{R1,R2} > 1. �
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Now we turn to the local stability of the endemic equilibrium Ei for a fixed i. We assume that

strain j cannot invade the equilibrium of strain i, that is we assume R̂j < 1 for j 6= i. In this case

we are able to show that the endemic equilibrium is locally stable. That is, the endemic equilibrium

of strain i is locally stable if the other strain cannot invade it. The results on local stability of

single-strain equilibrium Ei are summarized below

Theorem 3.4 Assume Ri > 1. If R̂j < 1, then the endemic equilibrium Ei is locally asymptotically

stable. If R̂j > 1, it is unstable.

Proof. Similarly to proof in Theorem 3.3, Let us first linearize system (2.2) at E1. Let Sv(t) =

S∗
v1

+ xv(t), Iv1
(t) = I∗v1

+ yv1
(t), Iv2

(t) = yv2
(t), E(t) = z(t), Sh(t) = S∗

h1
+ xh(t), Ih(t) = yh(t).

Thus, we obtain the following linearized system



















































































dxv

dt
= −βv1

S∗
v1
yv1

− βv1
I∗v1
xv − βv2

S∗
v1
yv2

− µvxv,

dyv1

dt
= βv1

S∗
v1
yv1

+ βv1
I∗v1
xv − (µv + rv)yv1

,

dyv2

dt
= βv2

S∗
v1
yv2

− (µv + αv)yv2
,

dz

dt
= δyv2

− γz,

dxh

dt
= −βh1

S∗
h1

∫ τ

0
f1(s)yv2

(t− s)ds− βh2
S∗

h1

∫ τ

0
f2(s)z(t− s)ds− µhxh,

dyh

dt
= βh1

S∗
h1

∫ τ

0
f1(s)yv2

(t− s)ds+ βh2
S∗

h1

∫ τ

0
f2(s)z(t− s)ds− (µh + αh + rh)yh.

(3.7)

Similarly to proof in Theorem 3.3, we get the following characteristic equation:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ+ βv1
I∗v1

+ µv βv1
S∗

v1
βv2

S∗
v1

0

−βv1
I∗v1

λ 0 0

0 0 λ− βv2
S∗

v1
+ (µv + αv) 0

0 0 −δ λ+ γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ+ βv1
I∗v1

+ µv βv1
S∗

v1
βv2

S∗
v1

0

−βv1
I∗v1

λ 0 0

0 0 λ− (µv + αv)(R̂2 − 1) 0

0 0 −δ λ+ γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

(3.8)

It is easy to obtain that λ1 = (µv +αv)(R̂2 − 1), λ2 = −γ are two negative real characteristic roots

of system (2.2) for R̂2 < 1. The other two characteristic roots are determined by the following

equation:

λ2 + (βv1
I∗v1

+ µv)λ+ β2
v1
S∗

v1
I∗v1

= 0. (3.9)

Since βv1
I∗v1

+ µv > 0, β2
v1
S∗

v1
I∗v1

> 0, from the Routh-Hurwitz criterion, the eigenvalues λ3, λ4

from equation (3.9) have negative real parts or are negative. Furthermore, λ5 = −µh, λ6 =
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−(µh + αh + rh) < 0. Hence all eigenvalues have negative real part. This proves that when

R̂2 < 1, the dominance equilibrium E1 is locally asymptotically stable. Moreover, if R̂2 > 1, we

have λ1 = (µv + αv)(R̂1 − 1) > 0. Then the equilibrium E1 is unstable for R̂2 > 1.

By a similar argument as above, we can also analyze the stability of the dominance equilibrium

E2. The characteristic equation at E2 is as follows:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ+ βv2
I∗v2

+ µv βv1
S∗

v2
βv2

S∗
v2

0

0 λ− βv1
S∗

v2
+ (µv + rv) 0 0

−βv2
I∗v2

0 λ 0

0 0 −δ λ+ γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ+ βv2
I∗v2

+ µv βv1
S∗

v2
βv2

S∗
v2

0

0 λ− (µv + rv)(R̂1 − 1) 0 0

−βv2
I∗v2

0 λ 0

0 0 −δ λ+ γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

(3.10)

It is easy to see that system (2.2) has two negative real number eigenvalues λ1 = (µv +rv)(R̂1−1),

λ2 = −γ for R̂1 < 1. The others two characteristic roots are determined by the following equation:

λ2 + (βv2
I∗v2

+ µv)λ+ β2
v2
S∗

v2
I∗v2

= 0. (3.11)

It is evident that the equation (3.11) have two eigenvalues with negative real parts. Then λ5 =

−µh, λ6 = −(µh + αh + rh) < 0. Hence System (2.2) has six eigenvalues with negative real part.

Therefore, when R̂1 < 1, the dominance equilibrium E2 is locally asymptotically stable. Otherwise,

the equilibrium E2 is unstable for R̂1 > 1. �

4 Global stability of the disease-free equilibrium

In the previous section we established the local stability of the equilibria, that is, given the condi-

tions on the parameters, if the initial conditions are close enough to the equilibrium, the solution

will converge to that equilibrium. In this section our objective is to extend these results to global

results. That is, given the conditions on the parameters, convergence to the equilibrium occurs

independent of the initial conditions.

As a first step, we establish the global stability of the disease-free equilibrium.

Theorem4.1 If R0 = max{R1,R2} < 1, the disease-free equilibrium E0 is globally asymptotically

stable.

Proof. For the global stability analysis of the disease-free equilibrium E0, we will use a Lyapunov

function with Lasalle Invariance Principle. Let us consider the function V0 = Iv1
+ Iv2

. Note that
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the derivative of it along the solutions of the system (2.2) is

dV0

dt
= [βv1

Sv(t) − (µv + rv)]Iv1
(t) + [βv2

Sv(t) − (µv + αv)]Iv2
(t)

≤ [βv1

Λv

µv
− (µv + rv)]Iv1

(t) + [βv2

Λv

µv
− (µv + αv)]Iv2

(t)

= (µv + rv)(R1 − 1)Iv1
(t) + (µv + αv)(R2 − 1)Iv2

(t)

≤ 0

since R0 = max{R1,R2} < 1. Hence, by Lasalle Invariance Principle, for any solution (Sv, Iv1
, Iv2

,

E, Sh, Ih) ∈ Ω, the omega limit set of this solution is a subset of the largest invariant set in

{x ∈ Ω|V ′(x) = 0}. It is easy to see that the largest invariant set in {x ∈ Ω|V ′(x) = 0} is the

singleton set of E0. Then any solution in Ω converges to the DFE when max{R1,R2} < 1. �

5 Global stability of the single-strain equilibrium Ei

From Theorem 3.4 we know that under the specified conditions the equilibrium Ei is locally asymp-

totically stable. It remains to be established that Ei is globally stable. We expect to show this

result using a Lyapunov function. With g(x) = x − 1 − lnx, we define the following Lyapunov

functions.

V1(t) = S∗
v1
g(
Sv

S∗
v1

) + I∗v1
g(
Iv1

I∗v1

) + Iv2

V2(t) = S∗
v2
g(
Sv

S∗
v2

) + I∗v2
g(
Iv2

I∗v2

) + Iv1

We have to establish that V ′(t) ≤ 0 along the solution curves of system (2.2). Before proof, let us

make some preparations first. We denote

ϕIv
(t) = βh1

∫ τ

0
f1(s)Iv2

(t− s)ds, ϕE(t) = βh2

∫ τ

0
f2(s)E(t− s)ds.

From the third equation, we have

E(t) = E0e
−γt + δ

∫ t

0
Iv2

(σ)e−γ(t−σ)dσ. (5.1)

Similarly, from the fourth and the fifth equation, we obtain

Sh(t) = Sh0
e−

∫

t

0
(ϕIv

(σ)+ϕE (σ)+µh)dσ + Λh

∫ t

0
e−

∫

t

σ
(ϕIv

(b)+ϕE(b)+µh)dbdσ, (5.2)

and

Ih(t) = Ih0
e−(µh+αh+rh)t +

∫ t

0
Sh(σ)(ϕIv

(σ) + ϕE(σ))e−(µh+αh+rh)(t−σ)dσ. (5.3)

The following Theorem summarizes the result.

Theorem 5.1 Assume R̂2 < 1. Then equilibrium E1 is globally asymptotically stable, that is, for

any initial condition x0 ∈ X the solution of system (2.2) converge to E1.
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Proof. Calculating the derivative of the expressions of V1(t) along the system (2.2), we obtain

dV1(t)

dt
= S∗

v1
(1 −

S∗
v1

Sv
)

1

S∗
v1

[Λv − βv1
SvIv1

− βv2
SvIv2

− µvSv]

+I∗v1
(1 −

I∗v1

Iv1

)
1

I∗v1

[βv1
SvIv1

− (µv + rv)Iv1
]

+[βv2
SvIv2

− (µv + αv)Iv2
]

= (1 −
S∗

v1

Sv
)[βv1

S∗
v1
I∗v1

+ µvS
∗
v1

− βv1
SvIv1

− βv2
SvIv2

− µvSv]

+(1 −
I∗v1

Iv1

)[βv1
SvIv1

− βv1
S∗

v1
Iv1

]

+[βv2
SvIv2

− (µv + αv)Iv2
]

= −
µv(Sv − S∗

v1
)2

Sv
+ βv1

S∗
v1
I∗v1

(1 −
S∗

v1

Sv
)(1 −

SvIv1

S∗
v1
I∗v1

) − (1 −
S∗

v1

Sv
)βv2

SvIv2

+βv1
S∗

v1
I∗v1

(1 −
I∗v1

Iv1

)(
SvIv1

S∗
v1
I∗v1

−
Iv1

I∗v1

) + [βv2
SvIv2

− (µv + αv)Iv2
]

= −
µv(Sv − S∗

v1
)2

Sv
+ βv1

S∗
v1
I∗v1

(1 −
S∗

v1

Sv
−
SvIv1

S∗
v1
I∗v1

+
Iv1

I∗v1

) − (βv2
SvIv2

− βv2
S∗

v1
Iv2

)

+βv1
S∗

v1
I∗v1

(1 +
SvIv1

S∗
v1
I∗v1

−
Iv1

I∗v1

−
Sv

S∗
v1

) + [βv2
SvIv2

− (µv + αv)Iv2
]

= −
µv(Sv − S∗

v1
)2

Sv

+ βv1
S∗

v1
I∗v1

(2 −
S∗

v1

Sv

−
Sv

S∗
v1

) + [βv2
S∗

v1
− (µv + αv)]Iv2

= −
µv(Sv − S∗

v1
)2

Sv
− βv1

S∗
v1
I∗v1

[g(
S∗

v1

Sv
) + g(

Sv

S∗
v1

)] + (µv + αv)(R̂2 − 1)Iv2

(5.4)

Since g(x) ≥ 0 for x > 0, R̂2 < 1, we have dV1(t)/dt ≤ 0. Define:

Ω̄ =

{

(Sv, Iv1
, Iv2

, E, Sh, Ih) ∈ Ω

∣

∣

∣

∣

dV1(t)

dt
= 0

}

We want to show that the largest invariant set in Ω̄ is the singleton E1. In fact, from equation

(5.4), dV1(t)/dt = 0, and using the fact that 1 − x+ lnx ≤ 0 for all x > 0 with equality holding if

x = 1, we have

Sv(t) = S∗
v1
, Iv2

(t) = 0. (5.5)

Using Equation (5.5), we obtain

0 =
dSv(t)

dt
= Λv − βv1

S∗
v1
Iv1

(t) − µvS
∗
v1

Rearranging gives

Iv1
(t) =

Λv − µvS
∗
v1

βv1
S∗

v1

Using the fact that the equilibrium ε1 satisfies the relation

Λv − βv1
S∗

v1
I∗v1

− µvS
∗
v1

= 0.
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we easily obtain

Iv1
(t) = I∗v1

, for t ≥ 0.

From the equation (5.1), we obtain

lim sup
t→∞

E(t) = lim sup
t→∞

(

E0e
−γt + δ

∫ t

0
Iv2

(σ)e−γ(t−σ)dσ

)

= δ lim sup
t→∞

Iv2
(t) lim sup

t→∞

∫ t

0
e−γ(t−σ)dσ = 0.

Thus we have

lim sup
t→∞

ϕIv
(t) = lim sup

t→∞
βh1

∫ τ

0
f1(s)Iv2

(t− s)ds = βh1
a1 lim sup

t→∞
Iv2

(t) = 0,

and

lim sup
t→∞

ϕE(t) = lim sup
t→∞

βh2

∫ τ

0
f2(s)E(t− s)ds = βh2

a2 lim sup
t→∞

E(t) = 0,

From the equation (5.2), we obtain

lim sup
t→∞

Sh(t)

= lim sup
t→∞

(

Sh0
e−

∫

t

0
(ϕIv

(σ)+ϕE (σ)+µh)dσ + Λh

∫ t

0
e−

∫

t

σ
(ϕIv

(b)+ϕE(b)+µh)dbdσ

)

= Λh lim sup
t→∞

∫ t

0
e−µh(t−σ)dσ =

Λh

µh

= S∗
h1
.

From the equation (5.3), we obtain

lim sup
t→∞

Ih(t)

= lim sup
t→∞

(

Ih0
e−(µh+αh+rh)t +

∫ t

0
Sh(σ)(ϕIv

(σ) + ϕE(σ))e−(µh+αh+rh)(t−σ)dσ

)

= 0.

Hence, the largest invariant set in Ω̄ is the singleton ε1. By the LaSalle Invariance Principle and

Theorem 3.4, we see that the equilibrium E1 is globally asymptotically stable. �

Using the same proof as in Theorem 5.1, we have the following Theorem 5.2

Theorem 5.2 Assume R̂1 < 1. Then, equilibrium E2 is globally asymptotically stable
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Proof. Calculating the derivative of the expressions of V2(t) along the system (2.2), we obtain

dV2(t)

dt
= S∗

v2
(1 −

S∗
v2

Sv
)

1

S∗
v2

[Λv − βv1
SvIv1

− βv2
SvIv2

− µvSv]

+I∗v2
(1 −

I∗v2

Iv2

)
1

I∗v2

[βv2
SvIv2

− (µv + αv)Iv2
]

+[βv1
SvIv1

− (µv + rv)Iv1
]

= (1 −
S∗

v2

Sv
)[βv2

S∗
v2
I∗v2

+ µvS
∗
v2

− βv1
SvIv1

− βv2
SvIv2

− µvSv]

+(1 −
I∗v2

Iv2

)[βv2
SvIv2

− βv2
S∗

v2
Iv2

]

+[βv1
SvIv1

− (µv + rv)Iv1
]

= −
µv(Sv − S∗

v2
)2

Sv
+ βv2

S∗
v2
I∗v2

(1 −
S∗

v2

Sv
)(1 −

SvIv2

S∗
v2
I∗v2

) − (1 −
S∗

v2

Sv
)βv1

SvIv1

+βv2
S∗

v2
I∗v2

(1 −
I∗v2

Iv2

)(
SvIv2

S∗
v2
I∗v2

−
Iv2

I∗v2

) + [βv1
SvIv1

− (µv + rv)Iv1
]

= −
µv(Sv − S∗

v2
)2

Sv
+ βv2

S∗
v2
I∗v2

(1 −
S∗

v2

Sv
−
SvIv2

S∗
v2
I∗v2

+
Iv2

I∗v2

) − (βv1
SvIv1

− βv1
S∗

v2
Iv1

)

+βv2
S∗

v2
I∗v2

(1 +
SvIv2

S∗
v2
I∗v2

−
Iv2

I∗v2

−
Sv

S∗
v2

) + [βv1
SvIv1

− (µv + rv)Iv1
]

= −
µv(Sv − S∗

v2
)2

Sv

+ βv2
S∗

v2
I∗v2

(2 −
S∗

v2

Sv

−
Sv

S∗
v2

) + [βv1
S∗

v2
− (µv + rv)]Iv1

= −
µv(Sv − S∗

v2
)2

Sv
− βv2

S∗
v2
I∗v2

[g(
S∗

v2

Sv
) + g(

Sv

S∗
v2

)] + (µv + rv)(R̂1 − 1)Iv1

(5.6)

Since g(x) ≥ 0 for x > 0, R̂1 < 1, we have dV2(t)/dt ≤ 0.

Ω̄ =

{

(Sv, Iv1
, Iv2

, E, Sh, Ih) ∈ Ω

∣

∣

∣

∣

dV2(t)

dt
= 0

}

We want to show that the largest invariant set in Ω̄ is the singleton E2. In fact, from equation

(5.6), dV2(t)/dt = 0, and using the fact that 1 − x+ lnx ≤ 0 for all x > 0 with equality holding if

x = 1, we have

Sv(t) = S∗
v2
, Iv1

(t) = 0. (5.7)

Using equation (5.7), we obtain

0 =
dSv(t)

dt
= Λv − βv2

S∗
v2
Iv2

(t) − µvS
∗
v2

Rearranging gives

Iv2
(t) =

Λv − µvS
∗
v2

βv2
S∗

v2

Using the fact that the equilibrium E2 satisfies the relation

Λv − βv2
S∗

v2
I∗v2

− µvS
∗
v2

= 0.
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we easily obtain

Iv2
(t) = I∗v2

, for t ≥ 0.

From the equation (5.1), we obtain

lim sup
t→∞

E(t) = lim sup
t→∞

(

E0e
−γt + δ

∫ t

0
Iv2

(σ)e−γ(t−σ)dσ

)

= δI∗v2
lim sup

t→∞

∫ t

0
e−γ(t−σ)dσ

=
δI∗v2

γ
= E∗.

Thus we have

lim sup
t→∞

ϕIv
(t) = lim sup

t→∞
βh1

∫ τ

0
f1(s)Iv2

(t− s)ds = βh1
a1I

∗
v2

= 0,

and

lim sup
t→∞

ϕE(t) = lim sup
t→∞

βh2

∫ τ

0
f2(s)E(t− s)ds = βh2

a2E
∗ = 0,

From the equation (5.2), we obtain

lim sup
t→∞

Sh(t)

= lim sup
t→∞

(

Sh0
e−

∫

t

0
(ϕIv

(σ)+ϕE (σ)+µh)dσ + Λh

∫ t

0
e−

∫

t

σ
(ϕIv

(b)+ϕE(b)+µh)dbdσ

)

= Λh lim sup
t→∞

∫ t

0
e−(βh1

a1I∗v2
+βh2

a2E∗+µh)(t−σ)dσ

=
Λh

βh1
a1I∗v2

+ βh2
a2E∗ + µh

= S∗
h2
.

From the equation (5.3), we obtain

lim sup
t→∞

Ih(t)

= lim sup
t→∞

(

Ih0
e−(µh+αh+rh)t +

∫ t

0
Sh(σ)(ϕIv

(σ) + ϕE(σ))e−(µh+αh+rh)(t−σ)dσ

)

= S∗
h2

(βh1
a1I

∗
v2

+ βh2
a2E

∗) lim sup
t→∞

∫ t

0
e−(µh+αh+rh)(t−σ)dσ

=
(βh1

a1I
∗
v2

+ βh2
a2E

∗)

µh + αh + rh
S∗

h2
= I∗h.

Hence, the largest invariant set in Ω̄ is the singleton E2. By the LaSalle Invariance Principle and

Theorem 3.4, we see that the equilibrium E2 is globally asymptotically stable. �

6 Discussion

In this paper, we introduce a two-strain avian influenza model with distributed delay and envi-

ronmental transmission between poultry and humans. We define the basic reproduction number
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R0 of the disease as the maximum of the reproduction numbers of each strain. We show that if

R0 < 1 the disease-free equilibrium E0 is locally and globally stable, that is the number of infected

with each strain goes to zero. Furthermore, we show that if R0 > 1, then the disease persists.

Moreover, the single-strain equilibrium E1 (or E2) is locally asymptotically stable if the invasion

numbers R̂2 (or R̂1) is smaller than one. Furthermore, we show that the single-strain equilibrium

is globally stable, that is the strain 1 persists in poultry (or the strain 2 persists in poultry, the

environment and humans). The existence and lack of uniqueness of the coexistence equilibrium is

verified analytically when the invasion numbers R̂1 = R̂2 = 1 and the reproduction numbers of

each strain R1 = R2 > 1.

From the perspective of public health, controlling avian influenza A (H7N9) virus may be per-

formed by monitoring the reproduction number of strain 2 R2 and the invasion number R̂1. If

R2 < 1, then the single-strain equilibrium E2 does not exist, and humans cannot be infected with

strain with HPAI. Reducing R2 may be done by reducing the transmission rate βv2
through vac-

cination or increasing the HPAI-generated disease-induced death rate αv through selective culling

of infected poultry. Mass culling which decreases the poultry lifespan 1/µv is also an effective way

to decrease the reproduction number, as long as mass culling is not only performed in response to

an outbreak but is also performed as preventive measure. If R2 > 1, R̂1 > 1, then the presence of

LPAI in poultry will lead to elimination of HPAI in poultry. Thus, maintaining high levels of LPAI

in poultry is a possible, although not very advisable, strategy to reduce HPAI. If R2 > 1, R̂1 < 1,

the single-strain equilibrium not only exists but also is locally asymptotically and global stable.

Humans can be infected with strain 2. If R1 = R2 > 1, R̂2 = R̂2 = 1, then many coexistence

equilibria exist.
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