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irregular operator equation. The research has been motivated by an inverse problem in epidemiol-
ogy, where the goal was to reconstruct a time dependent treatment recovery rate for Plasmodium
falciparum, the most dangerous form of malaria. Initial numerical simulations gave rise to a theo-
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generate a systematic error in the value of the regularization parameter for Tikhonov’s stabilizing
algorithm.
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1. The model of P. falciparum Malaria in India

Malaria is an infectious disease affecting humans and mosquitos. The virus cannot be transmitted
directly between mosquitos, which means that a mosquito can only acquire the disease through an
infected human’s blood, and once a mosquito gets infected it never recovers. Therefore, the dynamic
of the mosquito population is given by the following graph [MH10]

X → Y,

indicating that mosquitos can only move from a susceptible group to the infected one. In the
model, we assume that the susceptible mosquito population size, X(t), along with infected mosquito
population size, Y (t), are described by the differential equations,

X ′(t) = Λ− rX(t)I(t)− dX(t), (1.1)

Y ′(t) = rX(t)I(t)− dY (t). (1.2)

1This work is supported by NSF under grant (DMS-1112897)



2

The dynamics of human population results in a more complicated model than (1.1)-(1.2) and can
be outlined as

S → C → I → R → S.

It takes into consideration the fact that malaria cannot be transmitted from human to human,
which means that humans can only receive the disease from infected mosquito’s bites. The difference
between humans and mosquitos is that humans can actually recover from the disease, and reinfection
of recovered humans is common in malaria. Moreover, human infection has an additional stage,
called symptomatic, which is C(t) in the above graph. That is, instead of directly moving to the
infected class, a susceptible human will move to the symptomatic class before getting infected. In
the model, S(t), C(t), I(t), and R(t) are described by the equations below,

S′(t) = λ(t)− βS(t)Y (t)− µS(t) + ωR(t), (1.3)

C ′(t) = β(S(t) +R(t))Y (t)− (µ+ ν)C(t), (1.4)

I ′(t) = νC(t)− (µ+ γ(t))I(t), (1.5)

R′(t) = γ(t)I(t)− βR(t)Y (t)− (µ+ ω)R(t). (1.6)

The information on parameters and variables for humans and mosquitos is given in Table 1.

Table 1. Parameters and variables

Parameters Interpretation
Λ mosquito birth rate
r transmission coefficient human → mosquito
d mosquito death rate
M total mosquito population size
µ human natural death rate
β transmission coefficient mosquito → human
ν symptomatic stage recovery rate
ω recovered → susceptible recruitment rate
Variables Interpretation
X(t) susceptible mosquito population size
Y (t) infected mosquito population size
I(t) infected human population size
P (t) total human population size
S(t) susceptible human population size
C(t) population size with clinical symptoms
R(t) recovered human population size
y(t) proportion of infected mosquitos
γ(t) human treatment-recovery rate
λ(t) human birth rate

The most difficult parameter to estimate, appears to be the treatment recovery rate γ(t) [MH10].
Since it was not feasible to fit the data with a constant γ, even for the early period of 1984-1997,
a variable recovery rate γ(t) has been adopted in [MH10] and set to be proportional to the total
expenditures for the malaria control, which was, in turn, assumed to be proportional to the total
human population size, i.e., γ(t) = λP (t). With the use of NonlinearModelFit, the proportionality
coefficient λ has been estimated as λ = 0.024 person/year. This value of the parameter results in
a remarkable agreement between the reported number of clinical cases and the symptomatic curve
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C(t) generated by the model for the period from 1984 to 1997. However, after 1997 the model
predicts a significantly larger number of cases than the number actually observed. A possible
explanation for the discrepancy could be the 1998 launch of a Roll Back Malaria (RBM) initiative
aimed at reducing global malaria cases by half from 2000 till 2010, and by three quoters in 2015.
With new financial and logistics support in place, the treatment recovery rate γ(t) has changed
since 1998. So, with the initial date being 1984, the coefficient λ had to be increased 13.5 years
into the model in order to account for the enhanced malaria treatment after the start of RBM. To
that end, a step function in the form cP (t)H(t− 13.5) was added to λP (t). However, this did not
seem to work and eventually the symptomatic data has been fitted with the addition of scaled step
functions to the mosquito death rate, d, and to the scaled mosquito-human transmission coefficient,
β, [MH10].

In our study we propose to use the inverse problem approach in order to reconstruct the time-
dependent treatment recovery rate function γ(t) and to compare our estimated γ(t) with the one
obtained in [MH10]. The algorithm presented below includes two linear inverse subproblems:
differentiation of discrete noisy data as well as computation of the second derivative of the discrete
noisy data. These subproblems are unstable in the sense that even very small inaccuracies in
the reported data can result in large errors in the computed derivatives. For this reason, one
has to incorporate the technique known as regularization, which allows to strike a proper balance
between accuracy and stability and, therefore, to minimize the computational error. One of the
main challenges in the implementation of any regularization scheme is to choose a ”near optimal”
value of the regularization parameter responsible for striking this balance.

2. Numerical Procedure and Computational Preliminaries

Introduce the notation, T (t) := S(t) + R(t), for the class combining susceptible and recovered
humans. The initial value for Y (t), the number of infected mosquitos, can hardly be obtained.
However, the initial value for the proportion of infected mosquitos has been estimated in [MH10].
Thus, we denote y(t) := Y (t)/(X(t)+Y (t)), b := β(X(t)+Y (t)), and arrive at the following system

P = T + I + C

y′ = r(1− y)I − dy

T ′ = λ(t)− bTy − µT + γ(t)I

C ′ = bTy − (µ+ ν)C

(2.1)

with P (t) being the total human population. Our goal is to find γ(t), the human treatment-recovery
rate, given estimated values of λ, r, b, µ, ν [MH10], as well as the data available for C(t) and P (t).
From (2.1), one derives

γ(t) =
by2[−λ+ C ′ + (µ+ ν)C] + y(C ′′ + 2µC ′ + νC ′ + µ2C + µνC)− y′[C ′ + (µ+ ν)C]

by2(P − C)− y[C ′ + (µ+ ν)C]
, (2.2)

where y(t) satisfies the differential equation

y′ = E(t)y +B(t) +
D(t)

y
, (2.3)

E := rC − rP − d, B := r(P − C) +
r

b
[C ′ + (µ+ ν)C], D := −r

b
[C ′ + (µ+ ν)C]. (2.4)
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Figure 1. Clinical cases, C(t), of P. falciparum malaria in India and the simulated data

This nonlinear ODE can be solved numerically in a stable manner. However, computation of C ′(t)
from discrete experimental data for C(t) is unstable and has to be regularized. Moreover, once y(t)
has been evaluated from (2.3), one will need to calculate γ(t) using (2.2). To that end, one has to
find C ′′(t), given discrete experimental data for C(t). This step is also unstable.

Table 2. Clinical cases, C(t), of P. falciparum malaria in India in 1984-2013 [MS]

Year 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
Incidence (million) 0.65 0.54 0.64 0.62 0.68 0.76 0.75 0.92 0.88 0.85

Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Incidence (million) 0.99 1.14 1.18 1.01 1.03 1.14 1.05 1.01 0.90 0.86

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Incidence (million) 0.89 0.81 0.84 0.74 0.77 0.84 0.78 0.67 0.53 0.45

The data on clinical cases, C(t), of P. falciparum malaria in India over the period 1984-2013
[MS] is given in Table 2. In order to test our solver for stable numerical differentiation, we begin
numerical analysis with experiments for simulated data using the following Gaussian function

C(t) = ãe−
(t−b̃)2

2c̃2 + d̃, (2.5)

with ã = 0.7, b̃ = 15, c̃ = 6, and d̃ computed from the initial condition C(t0) = 0.53. This function
allows to mimic the real data on clinical cases listed in Table 2. Since the real data is reported
yearly, we take discrete values of model function (2.5), add normally distributed random noise
to these discrete values, and then spline. Noise in the data can be due to a sampling method,
corrupt or incomplete reporting, or any other possible reason. The graphs of the real clinical data,
simulated data (2.5), and the noisy simulated data are shown in Figure 1. The first and second
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Figure 2. GCV curves, relative error curves, and comparison of the derivatives, C ′(t)

derivatives of simulated data (2.5) can be evaluated analytically:

C ′(t) = − ã(t− b̃)

c̃2
e−

(t−b̃)2

2c̃2 , C ′′(t) =
ã

c̃2

[
(t− b̃)2

c̃2
− 1

]
e−

(t−b̃)2

2c̃2 . (2.6)

Given these analytic expressions, we can directly compare our numerical solutions with the exact
derivatives to assess the efficiency of the algorithm for estimating C ′ and C ′′. While a regularizing
operator, Rα, for the computation of C ′

α from the discrete noisy data Cσ can be generated by
a number of algorithms, the selection of a regularization parameter, α, constitutes a significant
difficulty. Indeed, as it has been established by A. Bakushinsky in [B84], in order to construct
a convergent stabilizing strategy in an infinite dimensional case one needs to use the information
on the noise level in the data (apart from the data itself). However, for the data on clinical P.
falciparum malaria cases, Cσ, the noise level cannot be measured. Therefore, one has no alternative
but to resort to a heuristic parameter selection method, like L-curve, quasi-optimality and quotient
criteria, or generalized cross validation (GCV) [BL11, H98, HO93, H92, LY97, RR13, V02, W90,
L78]. Note that quasi-optimality and quotient criteria for the parameter selection are justified in
case of finite-dimensional linear equations [L78].

The cross validation is based on successfully leaving out elements C
(i)
σ of the vector Cσ; computing

a regularized estimate of the unknown function C ′ from the reduced data set; and predicting the

left out coordinate C
(i)
σ with the estimated value of C ′. The regularization parameter is then chosen

as a minimizer of the overall prediction error. The GCV function is obtained from the regular cross
validation by a substitution that makes it invariant with respect to orthogonal transformations of
the response vector Cσ. In our initial experiments we write the numerical differentiation problem in
the form of Volterra’s integral equation of the first kind and use a finite-dimensional version of the
Tikhonov stabilizing algorithm [TA77, TGSY95, TLY98] in L2 combined with GCV to reconstruct
C ′ from (2.5) for different levels of discrete white noise. The discrete approximation in the solution
space, X , is carried out by means of cubic B-spline functions, and the corresponding regularized
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problem is solved for the unknown vector of the spline expansion coefficients. We take m, the
number of the spline functions, to be 100, while n, the size of the data space, is 30 (the data is
being collected over a 30-year period, see Figure 1 and Table 2). This gives us an undetermined
m×n linear system to handle by Tikhonov’s algorithm. Since this is the case of simulated data, we
compare the GCV regularization parameter, αGCV , with the optimal one, αRE , which minimizes
the relative error. The results are summarized in Figure 2 and Table 3. One can see that an overall
performance of GCV is satisfactory despite its tendency to under-regularize the computed solution,
which is typical for a small sample [LDA12]. One may also observe that GCV does not capture
”little” noise and returns α = 0, while in fact the regularization is needed. This behavior will be
explained in our theoretical analysis below.

Table 3. Experimental results for various relative noise levels

Noise αGCV αRE
||C′

αGCV
−C′||

||Ĉ′||
||C′

αRE
−C′||

||C′||
0.5% 0 3.8× 10−2 0.7686 6.12× 10−2

1% 6.00× 10−3 6.20× 10−2 2.09× 10−1 9.05× 10−2

3% 3.90× 10−2 1.34× 10−1 2.65× 10−1 1.67× 10−1

5% 7.10× 10−2 1.94× 10−1 3.09× 10−1 2.21× 10−1

8% 1.18× 10−1 2.79× 10−1 3.63× 10−1 2.83× 10−1

12% 1.81× 10−1 3.88× 10−1 4.21× 10−1 3.47× 10−1

15% 2.30× 10−1 4.69× 10−1 4.56× 10−1 3.86× 10−1

20% 3.16× 10−1 6.04× 10−1 5.03× 10−1 4.41× 10−1

Once the first derivative, C ′
α, has been computed, we can use it as the data and evaluate C ′′

α in
the same manner. However, it turns out that in this particular situation the GCV method does not
work for the second derivative. The discussion in Section 3 sheds some light on the cases when GCV
is unable to detect noise in the data even if its level is substantial. Nevertheless, the experiments
for C ′ do give us assurance that if GCV works, the value of αGCV is rather reliable.

Encouraged by that observation, we proceed to the clinical data. Yet again, the GCV fails
to reconstruct the derivative (by showing minimum at α = 0), see Figure 3. To overcome the
failure of generalized cross validation, we opt to consider two partial data sets. Specifically, denote
t1 = 1984, t2 = 1985, ..., t30 = 2013. The original data set, as illustrated in Table 2, consists
of 30 points: {C(t1) = 0.65, C(t2) = 0.54, ..., C(t30) = 0.45}. Instead of using this full set, we
conduct the experiments with ”odd” and ”even” partial data sets, {C(t1), C(t3), ..., C(t29)} and
{C(t2), C(t4), ..., C(t30)}, separately. We can see from the graphs that for both partial data sets,
the GCV curves give clear minima. The regularization parameters for ”odd” and ”even” partial
data sets, denoted as αO and αE , respectively, are very close: αO = 4.0×10−2, and αE = 5.2×10−2.

The two estimates of C ′ created from the partial data sets, αO and αE , are shown in Figure 3.
In order to get an approximation of C ′ for the full data set, one possible approach is to take the
average of two partial estimates. i.e., set C ′

Full = (C ′
αO

+ C ′
αE

)/2. Alternatively, one can find the

average of αO and αE , let αFull = (αO +αE)/2 = 4.6×10−2, and then generate C ′
Full from the full

data set using αFull as the regularization parameter. The comparison of these two approaches is
also shown in Figure 3. The first approach makes more sense because α is a function of noise and
the average of two α’s is not necessarily reflective of the total noise in the full data set.

The next step is to find C ′′ by using C ′
Full as the new data set and evaluating α by the GCV

method. Unable to succeed with the full set, we construct two approximations in the same manner
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Figure 3. Reconstruction of the derivative, C ′(t), for real data

as above. One is the average of two partial estimates, that is, C ′′
Full = (C ′′

αO
+ C ′′

αE
)/2, where the

two parameters αO = 7.5× 10−2 and αE = 1.3× 10−1. The other is the solution of the regularized
problem with αFull = (αO + αE)/2 = 1.025× 10−1. The results are shown in Figure 4.

3. Theoretical Analysis of Generalized Cross Validation

One can see that for this model, the GCV method is a fairly reliable indicator of the required
regularization level despite of its tendency to under-smooth given a small data set. In what follows
we present some theoretical analysis highlighting advantages and limitations of the GCV strategy
in case of a partially stochastic linear operator equation of the first kind with a random noise in
the response vector:

Ax+ η = fσ, X → Rn. (3.1)

The true solution x in (3.1) lies in a deterministic Hilbert space X , the operator A maps X into Rn,
and fσ ∈ Rn is the noise contaminated right-hand side. We assume here that X is either infinite
dimensional or its dimensionality is much larger than n. Hence, the problem is ill-posed due to
instability and the lack of data. Let η be a discrete white noise, i.e., E(ηi) = 0 and E(ηiηj) = σ2δij ,
for i, j = 1, 2, ..., n, where the variance σ2 is fixed and independent of n, that is, E(||η||2/n) = σ2

for each n. Consider a singular system of the operator A, {ui, si, vi}ni=1, with singular values

s1 ≥ s2 ≥ ... ≥ sn > 0.
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Figure 4. Reconstruction of the second derivative, C ′′(t), for real data

Here vi ∈ X with (vi, vj)X = δij , and ui ∈ Rn with (ui, uj)Rn = uTi uj = δij . Suppose that a
regularized solution, xα, has a linear filter representation

xα =

n∑
i=1

ωα(s
2
i )
(ui, fσ)

si
vi := Rαfσ, (3.2)

which defines a stabilizing strategy Rα : Rn → X . Introduce the influence matrix Aα := ARα. By
(3.2), one gets [V02]

Aα = Udiag(ωα(s
2
i ))U

T ,

where U is the orthogonal matrix whose ith column is the left singular vector ui of the operator
A. From the above identity, it follows that

trace(Aα) =

n∑
i=1

ωα(s
2
i ).
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To proceed with our analysis, we rewrite

rα := Axα − fσ = ARαfσ − fσ = (ARα − I)(Ax+ η)

= (Aα − I)Ax+ (Aα − I)η

=

n∑
i=1

[ωα(s
2
i )− 1]si(x, vi)ui +

n∑
i=1

[ωα(s
2
i )− 1](η, ui)ui.

Then according to Proposition 8.15 in [V02],

E

(
1

n
||rα||2

)
=

1

n
||(Aα − I)Ax||2 + σ2

n
trace[(Aα − I)2] (3.3)

=
1

n

n∑
i=1

(ωα(s
2
i )− 1)2s2i (x, vi)

2 +
σ2

n

n∑
i=1

(ωα(s
2
i )− 1)2. (3.4)

The expected value of the GCV function takes the form

EG(α) := E

(
1
n ||rα||

2

[ 1n trace(I −Aα)]2

)
=

E( 1n ||rα||
2)

[1− 1
n traceAα]2

:=
T (α)

V (α)
,

where

T (α) := E

(
1

n
||rα||2

)
, V (α) :=

[
1− 1

n
traceAα

]2
. (3.5)

For Tikhonov’s regularization, the filter is given by the formula

ωTikh
α (s2) =

s2

s2 + α
. (3.6)

Therefore from (3.3)-(3.6), one derives

T (α) =
1

n

n∑
i=1

α2s2i ν
2
i

(s2i + α)2
+

σ2

n

n∑
i=1

α2

(s2i + α)2
=

α2

n

n∑
i=1

s2i ν
2
i + σ2

(s2i + α)2
, νi := (x, vi),

V (α) =

[
1

n

n∑
i=1

(
1− s2i

s2i + α

)]2
=

α2

n2

[
n∑

i=1

1

s2i + α

]2
.

Combining these two expressions, one concludes that

EG(α) =
n
∑n

i=1
s2i ν

2
i +σ2

(s2i+α)2[∑n
i=1

1
s2i+α

]2 :=
Q(α)

Z(α)
. (3.7)

Since n < ∞, the functions Q(α) and Z(α) are differentiable for all α > 0. From (3.7), one obtains

Q′(α) = −2n

n∑
i=1

s2i ν
2
i + σ2

(s2i + α)3
, Z ′(α) = −2

n∑
i=1

1

s2i + α

n∑
i=1

1

(s2i + α)2
.



10

A necessary condition of an unconstrained minimum is

EG′(α) =
Q′(α)Z(α)−Q(α)Z ′(α)

Z2(α)

=
−2n

∑n
i=1

s2i ν
2
i +σ2

(s2i+α)3

∑n
i=1

1
s2i+α

+ 2n
∑n

i=1
s2i ν

2
i +σ2

(s2i+α)2

∑n
i=1

1
(s2i+α)2[∑n

i=1
1

s2i+α

]3 = 0.

Multiplication by 1
2n

[∑n
i=1

1
s2i+α

]3
> 0 yields

f(α) :=
EG′(α)

2n

[
n∑

i=1

1

s2i + α

]3
(3.8)

= −
n∑

i=1

s2i ν
2
i + σ2

(s2i + α)3

n∑
j=1

1

s2j + α
+

n∑
i=1

s2i ν
2
i + σ2

(s2i + α)2

n∑
j=1

1

(s2j + α)2
= 0. (3.9)

Below we will look more closely at the function f(α) in order to locate the global minimum of

EG(α). Introduce the notations zi :=
s2i ν

2
i +σ2

(s2i+α)2
and pi :=

1
s2i+α

. Then (3.8) implies

f(α) =

n∑
i=1

zi

n∑
j=1

p2j −
n∑

i=1

zipi

n∑
j=1

pj .

Notice that in the above summation, we can cancel 2n terms, and then we have 2n2−2n = 2n(n−1)
(divisible by 4) terms left. Let us group together zip

2
j , zjp

2
i ,−zipipj , and −zjpjpi, for 1 ≤ i < j ≤ n.

There will be n(n− 1)/2 such groups. One has

zip
2
j + zjp

2
i − zipipj − zjpjpi = zipj(pj − pi)− zjpi(pj − pi) = (zipj − zjpi)(pj − pi),

and f(α) takes the form

f(α) =
n∑

i=1

n∑
j=i+1

(zipj − zjpi)(pj − pi).

Clearly, since s1 ≥ s2 ≥ ... ≥ sn > 0, one concludes that p1 ≤ p2 ≤ ... ≤ pn. Hence, pj − pi ≥ 0 for
j > i. Then the sign of f(α) will be determined by the terms

zipj − zjpi =
1

(s2i + α)(s2j + α)

[
s2i ν

2
i + σ2

s2i + α
−

s2jν
2
j + σ2

s2j + α

]
, 1 ≤ i < j ≤ n.

Consider a special case ν2i = ν = const(ν > 0). Denote y := s2i . Then g(y) := yν+σ2

y+α = ν
y+σ2

ν
y+α

is decreasing for α < σ2

ν and increasing otherwise. If we additionally assume that for at least one
value of i, 1 ≤ i < n, si+1 < si, then

f(α) < 0 for α <
σ2

ν
, f(α) > 0 for α >

σ2

ν
, and f(α) = 0 for α =

σ2

ν
, (3.10)

which means the expected value of the GCV function has global minimum at α(σ) = σ2

ν . This
simple example gives some idea as to how (and why) the GCV parameter selection method works.
One can see that, even though the information on the noise level is not being used, the choice of
the regularization parameter is done based on the noise level σ2. That is, of course, ”on average”
since the analysis has been carried out for the expected value of the generalized cross validation.
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Figure 5. Comparison of solutions, x(t), for 5% noise in the data (ν2i = ν = 100)

The above observation also illustrates that, as opposed to L-curve [LY97], the GCV approach does

not result in a systematic error because, at least for this type of exact solution, α(σ) = σ2

ν → 0 as
σ → 0.

Figure 5 and Table 4 illustrate numerical simulations for this special case with ν = 100. In

the table, αTh stands for the exact value of σ2

ν , while αGCV is the actual value obtained as the
minimizer of the GCV function. One can see that αTh is remarkably close to the optimal value,
αRE , and αGCV provides a rather accurate estimate for both αRE and αTh. All three approximate
solutions turn out to be similar.

Table 4. Relative errors for theoretical, cross validated, and optimal values of α

Noise αGCV αRE αTh
||xαGCV

−x̂||
||x̂||

||xαRE
−x̂||

||x̂||
||xαTh

−x̂||
||x̂||

0.5% 4.68× 10−4 4.00× 10−6 2.31× 10−5 4.586189e− 02 3.688925e− 02 3.692068e− 02
1% 9.80× 10−4 6.00× 10−5 9.25× 10−5 8.981639e− 02 7.369934e− 02 7.373231e− 02
3% 3.46× 10−3 8.80× 10−4 8.33× 10−4 2.448693e− 01 2.151304e− 01 2.151459e− 01
5% 6.58× 10−3 2.60× 10−3 2.31× 10−3 3.670473e− 01 3.389240e− 01 3.392022e− 01
8% 1.26× 10−2 6.92× 10−3 5.92× 10−3 5.019018e− 01 4.833143e− 01 4.844241e− 01
12% 2.41× 10−2 1.61× 10−2 1.33× 10−2 6.204218e− 01 6.103246e− 01 6.126281e− 01
15% 3.58× 10−2 2.54× 10−2 2.08× 10−2 6.801905e− 01 6.727331e− 01 6.754755e− 01
20% 6.22× 10−2 4.48× 10−2 3.70× 10−2 7.481651e− 01 7.418337e− 01 7.443643e− 01

Now consider the general case: m ≤ ν2i ≤ M , i = 1, 2, ..., n, for some M > m ≥ 0. Intuitively,

one would think that for m ≤ ν2i ≤ M , instead of one point α(σ) = σ2

ν , there will be an interval
[αmin, αmax] such that f(α) < 0 when α < αmin and f(α) > 0 when α > αmax. Let us see if this
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is always the case. The sign of zipj − zjpi is determined by the sign of the following function

h(α) :=
s2i ν

2
i + σ2

s2i + α
−

s2jν
2
j + σ2

s2j + α

=
s2i s

2
j (ν

2
i − ν2j ) + α(s2i ν

2
i − s2jν

2
j )− σ2(s2i − s2j )

(s2i + α)(s2j + α)
, i < j.

Notice that whenever

ν21 > ν22 > ... > ν2n, (3.11)

the numerator is positive for any α ≥ 0 if si = sj . If si > sj , then it is still positive as long as
s2i s

2
j (ν

2
i −ν2j )

s2i−s2j
> σ2. Hence, when

σ2 < min
1≤i<j≤n, si<sj

s2i s
2
j (ν

2
i − ν2j )

s2i − s2j
, (3.12)

the expected value of the GCV function has a global minimum at α = 0. In other words, for
”small” noise satisfying (3.12) the GCV function suggests not to regularize. If the coefficients ν2i ,
i = 1, 2, ..., n, are not ordered according to (3.11), then one has

h(α) ≤
s2i s

2
j (M −m) + α(s2iM − s2jm)− σ2(s2i − s2j )

(s2i + α)(s2j + α)
.

Therefore, f(α) < 0 for α < αmin, where

αmin := min
1≤i<j≤n

σ2(s2i − s2j )− s2i s
2
j (M −m)

s2iM − s2jm
, (3.13)

provided that

σ2 > max
1≤i<j≤n, si>sj

s2i s
2
j (M −m)

s2i − s2j
= max

1≤i<n, si>si+1

s2i s
2
i+1(M −m)

s2i − s2i+1

. (3.14)

At the same time, for any 1 ≤ i < j ≤ n,

h(α) ≥
−s2i s

2
j (M −m) + α(s2im− s2jM)− σ2(s2i − s2j )

(s2i + α)(s2j + α)
.

That means, f(α) > 0 for α > αmax, where

αmax := max
1≤i<j≤n

σ2(s2i − s2j ) + s2i s
2
j (M −m)

s2im− s2jM
, (3.15)

if s2im− s2jM > 0 for all 1 ≤ i < j ≤ n. (3.16)

So, the expected value of the GCV function will reach its global minimum inside the interval
[αmin, αmax] for αmin and αmax satisfying (3.13) and (3.15), respectively, if inequalities (3.14) and
(3.16) hold. Once again, we observe that for small perturbations (not satisfying (3.14)) the success
of the GCV scheme is not guaranteed. That may be the case illustrated in Table 3, the first row,
when the GCV fails to capture 0.5% relative noise in the simulated data.
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4. Reconstruction of Human Treatment-Recovery Rate

Here we use algorithm (2.2)-(2.4) and the approximate values of C ′(t) and C ′′(t) computed in
Section 2 to evaluate y(t), the proportion of infected mosquitos and γ(t), the treatment-recovery rate
for humans. At the first step, we solve an auxiliary inverse problem in order to compute the human
birth rate, λ(t). Adding together equations in (1.3)-(1.6), one concludes that P ′(t) = λ(t)−µP (t).
On the other hand, following [MH10], we assume that Indian population satisfies the logistic human
population model:

P ′ = aP

(
1− P

K

)
− µP, (4.1)

where a is the growth rate for human population, andK is the carrying capacity of the environment.
This implies λ(t) = aP

(
1− P

K

)
. Using the census data for P (t) listed in Table 5 and considering

the average life expectancy in India over the 30 year period to be 65 (i.e., µ = 1/65), we formulate
the auxiliary inverse problem to estimate the remaining parameters, a and K.

Table 5. The real data set for Indian human population [FAO]

Year 1984 1985 1986 1987 1988 1989
Population (million) 764.749 781.737 798.942 816.329 833.834 851.375

Year 1990 1991 1992 1993 1994 1995
Population (million) 868.891 886.349 903.750 921.108 938.453 955.804

Year 1996 1997 1998 1999 2000 2001
Population (million) 973.148 990.460 1007.747 1025.015 1042.262 1059.501

Year 2002 2003 2004 2005 2006 2007
Population (million) 1076.706 1093.787 1110.626 1127.144 1143.289 1159.095

Year 2008 2009 2010 2011 2012 2013
Population (million) 1174.662 1190.138 1205.625 1221.156 1236.687 1252.140

To that end, we spline the above data, partition our time interval [1, 30] with grid points {tj}J1
by taking a small step size h, and apply the central difference formula to estimate P ′(t). Let
Pj := P (tj), j = 1, 2, ..., J . Then

(2hPj)(a− µ) + (−2hP 2
j )

a

K
= Pj+1 − Pj−1, j = 2, 3, ..., J − 1.

Thus, one arrives at a linear system with J−2 equations and 2 unknowns, Ax = F , which is solved
in the sense of least squares. As the solution to this auxiliary problem, we get a = 5.410770× 10−2

and K = 2.525319× 103. With two unknowns only, the above inverse problem is rather stable and
does not need to be regularized.

Table 6. Values of Parameters

Parameter a (computed) K (computed) r0 (fitted) b0 [MH10] d0 [MH10]
Value 0.05410770 2525.319 0.00037477 16.9923 12.55
Units years−1 numbers (million) years−1 years−1 years−1

Parameter η [MH10] ξ [MH10] y0 [MH10] µ [MH10] ν [MH10]
Value 0.0391625 0.00626284 0.02 1/65 365/7
Units years−1 unitless unitless years−1 years−1
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Figure 6. Reconstruction of y(t) and γ(t) for real data

Given C ′(t) and C ′′(t) approximated in Section 2 as well as the expression for λ(t), the unknown
functions y(t) and γ(t) can now be reconstructed by (2.2)-(2.4). In [MH10], the parameters b(t),
r(t), and d(t) are considered to be step functions due to the start of the Enhanced Malaria Control
Project (EMCP) in 1997, i.e.,

b(t) = b0(1− ξH(t− 13.5)), r(t) = r0(1− ξH(t− 13.5)), d(t) = d0 + ηH(t− 13.5),

where H(t) = 0 for t ≤ 0 and H(t) = 1 for t > 0 (the time t = 0 corresponds to 1983), and the
values of the parameters are listed in Table 6. However, even though a variety of mosquito control
measures aiming to reduce the population of mosquitos were incorporated with the EMCP in 1997,
one probably cannot expect their immediate effect on the disease transmission rates. Therefore in
this paper, we modify b(t) and r(t)

b(t) = b0
(
1− ξH(t− 14.5)(t− 13.5)1.6

)
, r(t) = r0

(
1− ξH(t− 14.5)(t− 13.5)1.6

)
,

(with re-fitted value of r0) so that the two transmission rates decrease gradually after the imple-
mentation of the EMCP in 1997. With these b(t) and r(t), the estimated values of y(t) and γ(t)
are shown in Figure 6.

One can see that introduction of the Roll Back Malaria program results in the decrease of
infected mosquito population and positively affects the treatment recovery rate. Treatment-recovery
rate γ(t) decreased in the period 2000-2006, possibly due to increasing resistance to sulphalene/
sulphadoxine-pyrimethamine (SP) used in chloroquine resistant areas in India at that time. In
2005, Artemisinin combination therapy (ACT) (artesunate (AS) plus SP) was approved for use
in chloroquine-resistant areas and the spread of application of ACT continuously grew until 2010
when AS plus SP became the standard of treatment in India [AA14]. Our treatment and recovery
rate captures the better treatment strategies in the period 2006-2010 by showing significant spike.
After 2010, our treatment rate shows decline, possibly due to increasing resistance to SP, one of
the drugs in ACT. India responded by replacing the combination by artemether lumefantrine in
2013 in seven areas [AA14].

5. Conclusions

The theoretical analysis carried out in Section 3 provides some insight into what can and cannot
be expected in the framework of the GCV approach. The absence of the systematic error [LY97] is
a nice feature. At the same time, ”little” noise may be hard to capture, and the overall tendency
to under-regularize clearly exhibits itself for a small sample. In [TY00], the authors show a number
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of counterexamples illustrating a possible lack of success in the implementation of GCV method
for 2× 2 linear systems. And even for a relatively ”large” noise, there are cases when GCV fails.

Nevertheless, for the lack of a better alternative, when the noise level is unknown, the GCV
method can, in many cases, be applied to determine a ”near optimal” regularization parameter.
At times, its implementation needs to be combined with the use of partial data sets as shown in
Section 2. Our numerical simulations for Plasmodium falciparum malaria disease, for the most
part, confirm the theoretical findings for both synthetic and real data.

From practical perspective the estimated proportion of infected mosquitos y(t) captures the
success of the Roll Back Malaria program in controlling infected mosquitos whose decline follows
the decline in human cases. At the same time our estimated treatment-recovery rate γ(t) illustrates
the complex nature of the interplay between treatment of malaria and resistance to major drugs.
Article [AA14] outlines the almost continuous changes in treatment policies made in India, and our
treatment-recovery rate shows that such changes are necessary for the continued success of malaria
treatment in the face of resistance.
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